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Section 1

The Conditional Independence Assumption
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Controlling for observables and causal PRF

Even if a non causal PRF is in any case a useful tool, our main goal is

to estimate a PRF that can be interpreted causally.

We now consider cases in which it is reasonable to make the

Conditional Independence Assumption.

This assumption says that controlling for a set of observable

variables, the PRF may have a causal interpretation.

In this part of the course we want to understand:

I the meaning of this assumption;

I how it relates to multiple regression.

Later in the econometric sequence you will see other assumptions

that allow you to estimate consistently causal parameters.
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Training and earnings
Consider the causal model:

y = µ+ τ1x1 + ν, (1)

where y is earnings and x1 is training, and the population regression

function

y = β0 + β1x1 + u (2)

By definition of the PRF, β1 is

β1 =
Cov(y , x1)

V (x1)
=

Cov(µ+ τ1x1 + ν, x1)

V (x1)
(3)

= τ1 +
Cov(ν, x1)

V (x1)

which, is not equal to τ1 if X1 is not randomly assigned and thus

Cov(ν, x1) 6= 0.
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The Conditional Independence Assumption
Suppose that there exist a variable X2 such that:

I ν can be decomposed (in the PRF sense) into

ν = δ2X2 + ω (4)

where, by definition of the PRF, E(X2ω) and E(ω) = 0;

I and ω is such that, for each value of X2, X1 is randomly assigned,

E(X1ω|X2) = 0 (5)

that is, X2 is the only reason why ν and X1 are correlated, which

is an identifying assumption (not valid by construction).

This is for example the setting of Black, Smith, Berger and Noel, “Is

the threat of reemployment services more effective than the services

themselves” AER, September 2003.
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The Conditional Independence Assumption (cont.)
Under the CIA, we will now show that the PRF:

y = β0 + β1x1 + β2x2 + u (6)

is causal for the effect of x1 on y , i.e.:

β1 = τ1

Note that β2 = δ2 and does not have any causal interpretation.

It is crucial to understand that the CIA is a solution as long as δ2X2

captures all the information in ν such that controlling for it X1 is

randomly assigned

A detail on which we will come back in the spring course: meaning of

“fully saturated PRF”.
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Section 2

The Population Multiple Regression

Function
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The Population Multiple Regression Function
Consider the population regression of y on both x1 and x2:

y = β0 + β1x1 + β2x2 + u (7)

where

(β0, β1, β2) = arg min
b0,b1,b2

E
[
(y − b0 − b1x1 − b2x2)

2] (8)

i.e. where the population parameters are defined to minimize the

square of the difference between y and the PMRF itself.

We want to show that if the CIA holds β1 is the causal effect of x1 on y

The same is true symmetrically if we are interested in the effect of x2.

If we can estimate consistently the PMRF, we get consistent

estimates of the causal parameters of interest as well.
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The coefficients of the PMRF

The First Order Conditions for problem 8 are:

E [x1(y − β0 − β1x1 − β2x2)] = 0 (9)

E [x2(y − β0 − β1x1 − β2x2)] = 0 (10)

E [(y − β0 − β1x1 − β2x2)] = 0 (11)

The first two conditions are symmetric: let’s focus on 9.
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The coefficients of the PMRF (cont.)

Consider the simple linear PRF of x1 on x2. We can always write:

x1 = x̂1 + r̂1 (12)

which we can substitute in 9 to get

E [(x̂1 + r̂1)(y − β0 − β1x1 − β2x2)] = E [(x̂1 + r̂1)u] = 0 (13)

By definition of the PRF, E(x̂1u) = 0, since x̂1 is a linear function of x2.

Moreover E(r̂1x2) = 0 given 12 and E(r̂1β0) = 0, and 13 becomes:

E [r̂1(y − β1x1)] = 0 (14)
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The coefficients of the PMRF (cont.)

Substituting 12 in 14 we get:

E [r̂1(y − β1(x̂1 + r̂1))] = 0 (15)

Again because E(r̂1x̂1) = E(r̂1x2) = 0 we are left with

E [r̂1(y − β1r̂1)] = 0 (16)

which finally gives

β1 =
E(r̂1y)
E(r̂2

1 )
=

Cov(r̂1, y)
V (r̂1)

(17)

The PRF coefficient β1 is equal to the covariance between y and the

residuals of the PRF of x1 on x2, divided by the variance of these

residuals.
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The coefficients of the PMRF (cont.)

We now want to show that if the CIA is satistified

β1 = τ1 (18)

and the PRF of y on x1 and x2 has a causal interpretation for the

effect of x1.
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The coefficient of the PMRF under the CIA
Substitute the causal model 1 in the numerator of 17:

E(r̂1y) = E(r̂1(µ+ τ1x1 + ν)) (19)

= τ1E(r̂2
1 ) + E(r̂1ν)

since E(r̂1X1) = E(r̂1(X̂1 + r̂1)) = E(r̂2
1 )

Now note that, given (4):

E(r̂1ν) = E(r̂1(δ2x2 + ω)) (20)

= δ2E(r̂1x2) + E(r̂1ω)) = E(r̂1ω))

= E(E(r̂1ω|x2)) = E(E(x1ω|x2)) = E(0) = 0

where the next to last equality holds because of the CIA (see

equation (5)).
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The coefficients of the PMRF under the CIA (cont.)

Substituting the results of the previous slide in 17

β1 =
E(r̂1y)
E(r̂2

1 )
=
τ1E(r̂2

1 )

E(r̂2
1 )

= τ1 (21)

If the CIA holds the PMRF can be interpreted causally for β1.

However, no causal interpretation can be given of β2.
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Summary
We have shown that if we are interested in the causal effect of x1 on y

the CIA may represent a solution.

The CIA says that the other variables {x2, ..., xk} that we observe are

detailed and exaustive enough to guarantee that if two subjects are

equal in terms of these variables the value of x1 is effectively

assigned randomly to them.

The randomness of the assignment of x1 given {x2...xk} is what

permits a causal interpretation of β1.

In what follows in this course we assume that the CIA holds

symmetrically for all variables, and therefore all the parameters of the

PMRF can be interpreted causally.

Future courses will discuss alternative solutions.
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Section 3

Interpretation of the coefficients of the

PMRF
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The partial Multiple Regression coefficient
Extending the analysis to many covariates x , consider:

y = β0 + β1x1 + ...+ βk xk + u (22)

(β0, ..., βk ) = arg min
b0,...,bk

E
[
(y − b1x1 − ...− bk xk )

2] (23)

the generic parameter βj (for j > 0) is

βj =
E(r̂jy)
E(r̂2

j )
=

Cov(r̂j , y)
V (r̂j)

(24)

This parameter measures the effect on y of the component of xj that

is orthogonal to the other x variables. In fact , it can be obtained by:

I regressing xj on all the others x variables;

I taking the residuals of this regression r̂j ;

I considering the simple PRF of y on the single variable r̂j ;

I r̂j captures the part of xj that is orthogonal to the other x .
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Section 4

SMRF and PMRF in matrix notation
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The model
As for the case of the simple linear regression, we now suppose to

have a random sample of observations on y and x1, ...xk and we ask:

I whether we can extend the OLS estimator;

I whether OLS continues to have good properties.

Given multiple covariates it is convenient to use matrix notation.

Y = Xβ + U (25)
I Y is the n × 1 column vector of observations on the outcome yi .

I X is the n× (k + 1) matrix of observations xij on the j th covariate.

I U is the n × 1 column vector of observations ui .

I β is the (k + 1)× 1 column vector of the parameters.

Note that X includes a column with all elements equal to 1 and the

corresponding parameter is the constant β0.
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The basic set of necessary assumption
I MLR 1: The population regression function is linear in the

parameters:

Y = Xβ + U (26)

I MLR 2: The n observations on Y and X are a random sample of

the population, so that

yi = Xiβ + ui (27)

where Xi is the ith row of X .

I MLR 3: There is no perfect collinearity, i.e no variable in X is

constant (in addition to the constant term ...) and there is no

exact linear dependency between any set of variables in X . Thus

X has full rank equal to (k+1).

MLR-3 generalizes SLR-3 in the simple regression case.
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The OLS estimator in matrix form
Under these assumptions, OLS solves the following problem

β̂ = argmin
b

U ′U = argmin
b

[Y − Xb]′[Y − Xb] (28)

where b is a (k + 1)× 1 column vector of possible parameter values.

There are k + 1 FOC for this problem which we can write as

∂U ′U
∂b

= X ′[Y − X β̂] = 0 (29)

X ′X β̂ = X ′Y (30)

which gives the OLS estimator in matrix form

β̂ = (X ′X )−1X ′Y (31)

where the full rank of X makes X ′X invertible.
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Algebraic properties of OLS in matrix form

The fitted values are

Ŷ = X β̂ (32)

and the estimated residuals are

Û = Y − Ŷ = Y − X β̂ (33)

Therefore the first order condition 29 can also be written as

X ′Û = 0 (34)

and since the first row of X ′ is a row of ones (the constant), the sum

of the OLS residuals is zero.

23 / 28



Section 5

Partialling out
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Again on the interpretation of the PMRF
The matrix

H = Z (Z ′Z )−1Z ′ (35)

is called a“projection matrix” because if you premultiply any vector Y

by H, the result is the projection of the vector Y on the space

spanned by Z .

Numerically it gives the least square prediction of Y given Z (see

graphical interpretation of OLS).

YZ = HY = Z (Z ′Z )−1Z ′Y = Z ψ̂ (36)

for the PRF

Y = Zψ + V (37)

Note that H is symmetric and idempotent.
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Projections
Consider the population regression:

Y = Xβ + U = W δ + Zγ + U (38)

where W is the main variable of interest and Z are control variables.

Consider the two projections

YZ = HY = Z (Z ′Z )−1Z ′Y = Z γ̃ (39)

WZ = HW = Z (Z ′Z )−1Z ′W = Z ρ̃ (40)

Consider the residuals from these two projections that we denote as

Ỹ = Y − YZ (41)

W̃ = W −WZ (42)

What happens if we regress Ỹ on W̃?
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Partialling out matrices
Consider now the symmetric idempotent matrix M:

M = I − H = I − Z (Z ′Z )−1Z ′ (43)

If you premultiply any vector by M you obtain the least square

estimated residuals of the regression of the vector on Z .

Ỹ = Y − YZ (44)

= MY = Y − Z (Z ′Z )−1Z ′Y (45)

W̃ = W −WZ (46)

= MW = W − Z (Z ′Z )−1Z ′W (47)

Ũ = U − UZ (48)

= MU = U − Z (Z ′Z )−1Z ′U (49)

Z̃ = Z − ZZ (50)

= MZ = Z − Z (Z ′Z )−1Z ′Z = 0 (51)
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Partialling out matrices (cont.)
Let’s now premultiply the PMRF 38 by M:

MY = MW δ + MZγ + MU (52)

Ỹ = W̃ δ + Ũ

which explains why M is called a “partialling out" matrix.

Consider the OLS-MM estimator of 52

δ̂ = (W̃ ′W̃ )−1W̃ ′Ỹ (53)

= (W ′M ′MW )−1W ′M ′MY = (W ′MW )−1W ′MY

It is obtained by regressing Y on the component of W which is

orthogonal to Z and is numerically identical to the OLS-MM estimator

of δ that we would obtain by estimating directly 38.

Also the standard error is numerically identical:

Var(δ̂) = σ2(W ′MW )−1.
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