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Abstract

A single worker is assigned a stream of projects over time. We provide a tractable

theoretical model in which the worker allocates her time among different projects.

When the worker works on too many projects at the same time, the output rate de-

creases and the time it takes to complete each project grows. We call this phenomenon

“task juggling,” and we argue that this phenomenon is pervasive in the workplace.

We show that task juggling is a strategic substitute of worker effort. We then present

an augmented model, in which task juggling is the result of lobbying by clients, or

co-workers, each of whom seeks to get the worker to apply effort to his project ahead

of the others’. We take the model to new data on judicial productivity.

1 Introduction

This paper studies the way in which a worker allocates time across different projects, or

equivalently, effort across different projects through time. We study, in particular, the phe-

nomenon of task juggling (frequently called multitasking), whereby a worker switches from

one project to another “too frequently.”

Task juggling is a first-order feature in many workplaces. Using time diaries and observa-

tional techniques, the managerial literature on Time Use documents that knowledge workers

(engineers, consultants, etc.) frequently carry out a project in short incremental steps, each

∗Thanks to Gad Allon, Canice Prendergast, Debraj Ray, Lars Stole. The paper refers to an On-
line Appendix, where some formal results are derived, which can be downloaded at the following link:
http://nicolapersico.com/files/appendix nopub continuous.pdf
Email: nicola@nicolapersico.com; andrea.ichino@unibo.it; decio.coviello@hec.ca.
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of which is interleaved with bits of work on other projects. For example, in a seminal study

of software engineers Perlow (1999) reports that

“a large proportion of the time spent uninterrupted on individual activities

was spent in very short blocks of time, sandwiched between interactive activities.

Seventy-five percent of the blocks of time spent uninterrupted on individual ac-

tivities were one hour or less in length, and, of those blocks of time, 60 percent

were a half an hour or less in length.”

Similarly, in their study of information consultants Gonzalez and Mark (2005, p. 151) report

that

“the information workers that we studied engaged in an average of about 12

working spheres per day. [...] The continuous engagement with each working

sphere before switching was very short, as the average working sphere segment

lasted about 10.5 minutes.”

The fact that much work is carried out in short, interrupted segments is, in itself, a descrip-

tively important feature of the workplace. But what causes these interruptions? The Time

Use literature points to the “interdependent workplace,” meaning an environment in which

other workers can (and do) ask/demand immediate attention to joint projects which may

distract the worker from her more urgent tasks. One of the workers interviewed by Gonzalez

and Mark (2005, p. 152) puts it this way:

“Sometimes you just get going into something and they [call] you and you have

to drop everything and go and do something else for a while [...] it’s almost like

you are weaving through, it is like, you know, a river, and you are just kind of

like: “Oh these things just keep getting in your way”, and you are just like: “get

out of my way” and then you finally get through some of the other tasks and

then you kind of get back, get back along the stream, your tasks [...].”

The literature on Human Scheduling, instead, attributes task juggling to the cognitive lim-

itations of individual human schedulers. Crawford and Wiers (2001, p. 34), for example,

write:

“One way in which human schedulers try to reduce the complexity of the

scheduling problem is by simplification [...]. However, a simplified scheduling

model leads to the oversimplification of the real system to be scheduled, and this

in turn creates unfeasible or sub-optimal schedules.”
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The physiological constraints on scheduling ability are explored in the medical literature.1

The popular press, however, has already rendered its verdict: scheduling is a challenge for

many workers for reasons both internal and external to the worker. Popular literature books

such as Covey (1989) and Allen (2001) exort (and attempt to help) the reader to prioritize

better. In The Myth of Multitasking: How ”Doing It All” Gets Nothing Done, we find a list

of suggestion designed to help people reduce multitasking on the job. The first two are:

– Resists making active [e.g., self-initiated] switches.

– Minimize all passive [e.g., other-initiated] switches.

(Cited from Crenshaw 2008, p. 89).

1.1 Effects of task juggling on productivity

We are interested in task juggling insofar as it affects productivity. The next example

illustrates a productivity loss which is mechanical, and inherent to task juggling.

Example 1 Consider a worker who is assigned two independent projects, A and B, each

requiring 10 days of undivided attention to complete. If she juggles both projects, for example

working on A on odd days and on B on even days, the average duration of the two projects

is equal to 19.5 days. If instead she focuses on each projects in turn, she completes A

on the 10-th day and then takes the next ten days to complete B. In the second case, the

average duration of both projects from the time of assignment is 15 days. Note that under

the second work schedule projects B does not take longer to complete, while A is completed

much faster; in other words, avoiding task juggling results in a Pareto-improvement across

projects durations.

The example shows that a worker who juggles too many projects takes longer to complete

each of them, than if she handled projects sequentially. The latter procedure corresponds to

the “greedy algorithm,” which is widely studied in the operations research literature.2

In addition to this mechanical slowdown, there may be “human” effects related to interrup-

tion: the worker may forget what she was doing before being interrupted, which impacts

the speed or quality of the worker’s output. Or the worker may enjoy the variety and,

conceivably, work harder if tasks are alternated.

1See, e.g., Morris et al. (1993) and Baker et al. (1996).
2The name “greedy” refers to prioritizing those projects which are closest to completion (which project

A is after day 1).
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1.2 Need for a model of task juggling

That task juggling must decrease productivity is well known from the operations research

literature. But that literature has a normative approach: it tells us that workers shouldn’t

juggle and should do “greedy” instead. And yet the evidence overwhelmingly shows that

workers actually do juggle. If we see this behavior in the workplace, and it is prevalent,

then as economists we want to understand it. Accordingly, we are interested in the following

positive questions :

1. How can we tell how much do workers juggle, if at all? (That is, establish an appropriate

metric on juggling which can be taken to data).

2. How large, quantitatively, are the productivity consequences of juggling? (Spell out

the relationship between juggling and productivity, for given effort and ability of the

worker)

3. Who/what makes workers juggle? And when workers are made to juggle, do they do

it in the specific way that our model assumes?

4. How does task juggling impact the workers’ incentives to exert effort?

Some of these questions have to do with incentives and, therefore, are properly in the domain

of economics as opposed to (classical) operations research. All of these questions are based

on the premise that, contrary to the prescriptions of operations research, workers juggle

tasks. To answer these questions, therefore, we need a new model, one where workers can

juggle tasks. A useful model must be richer than the “toy model” in Example 1, because we

want the model to match time series/panel data patterns like the ones presented in Section 6

below. It must also be tractable, because we want the model to answer questions 1-4 above.

This paper provides such a model.

1.3 Outline of the paper

As a first step toward more complex models, in this paper we focus on a single worker who

faces time allocation issues. In Section 3 we model a production process which may feature

task juggling. Formally, the model is summarized in a system of four functional equations

(1) through (4). Finding a solution to this system represents an original mathematical

contribution which is offered in Theorem 1. Based on this solution, we demonstrate that

effort and task juggling are strategic substitutes. This means that anything that makes

workers juggle more tasks will also, indirectly, reduce the worker’s incentives to exert effort.
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Section 4 addresses the incentives that generate task juggling. We model a lobbying game in

which the worker allocates effort under pressure by her co-workers, superiors, or clients. This

model is inspired by the idea of “interdependent workplace” discussed in the introduction.

We fully characterize the equilibrium of the lobbying game and show that, no matter how low

the cost of lobbying, in equilibrium there will be lobbying, which will induce task juggling.

This model provides a microfoundation of task juggling. We also show that, when worker

effort is non-contractible, more intense lobbying which makes workers juggle more tasks will

also, indirectly, reduce the worker’s incentives to exert effort. This indirect, strategic effect

compounds the direct effect of task juggling.

Section 5 extends the analysis to the case in which the worker pays a cost from switching

between projects. In Section 6 we take the model to the data, using original data on the

productivity of Italian judges. We demonstrate that task juggling is prevalent among these

judges, and that their choice of effort and scheduling behavior is well summarized, from an

empirical viewpoint, by Theorem 1.

2 Related Literature

What we call task juggling is viewed as an aberration in the queuing literature. The focus

of the queuing literature is to provide algorithms (“greedy”-type algorithms, usually) that

prevent task juggling. As we discussed in the introduction, we believe that this particular

aberration is worth studying because it arises empirically, arguably as a predictable result of

incentives. From the technical viewpoint, our model also departs from the queuing literature

because that literature focuses on giving algorithms that keep queing systems stable, that

is, sufficient conditions under which queues can’t ever get unacceptably or infinitely long.3

Our model is by nature unstable because the arrival rate exceeds the capacity of the worker

(in our notation, α > η/X). We believe that there is merit in going beyond stable queuing

systems because stability requires the serving facility to be idle at least a fraction of their

time, which is counterfactual in many environments (judges always have a backlog of cases

that they should be working on, for example). Finally, our paper is distinct from most of the

queuing literature in that the study of the incentives such as the ones we examine is largely

absent from that literature.

In the economics literature, Radner and Rothschild (1975) discuss task prioritization by a

single worker. They give conditions under which no element of a multidimensional controlled

Brownian motion ever falls below zero. The control represents a worker’s (limited) effort

3An exception to the focus on stability is Dai and Weiss (1996), who do study the evolution of an unstable
queing network.
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being allocated among several tasks, and the dimensions of the Brownian motion represent

the satisfaction levels with which each task is performed. Although broadly similar in its

subject matter, that paper is actually quite different from the present one. Among other

differences, it focuses on optimality and features no discussion of incentives.

Task juggling is studied in the sociological/management literature on time use (see Perlow

1999 for a good example and a review of the literature). This literature uses time logs and

observations to document the patterns of uninterrupted work time, and the causes of the

interruptions. This literature identifies “interdependent work” as the source of interruptions.

The “lobbying by clients” model presented in Section 4 captures this effect. There is also a

small literature devoted to measuring the disruption cost of interruptions, i.e., the additional

time to reorient back to an interrupted task after the interruption is handled (see e.g. Mark

et al. 2008, who review the literature). We introduce this cost in Section 5. At a more

popular level, there is large time management culture which focuses on the dynamics of

distraction and on “getting things done” (see e.g. Covey 1989, Allen 2001).4

The managerial “firefighting” literature (see Bohn 2000, Repenning 2001) documents the

phenomenon whereby an organization focuses resources on unanticipated flaws in almost-

completed projects (firefighting), and in so doing starves projects at earlier development

stages of necessary resources, which in turn ensures that these projects will later require

more firefighting, etc. This phenomenon is specular to the one we study because in our

model the inefficiency is caused by too few, not too many, resources devoted to late-stage

projects.

Dewatripont et al. (1999) provide a model in which expanding the number of projects a

worker works on will indirectly reduce the worker’s incentives to exert effort. We get the

same effect in Proposition 4. In their setup, the effect results from the worker’s incentives to

exert effort in order to signal his ability. Clearly, that effect is quite different than the one

analyzed in this paper.

3 The Production Process

In this section we introduce a dynamic production process which incorporates the possibility

of multitasking in a very simple way. Imagine a worker who is assigned a stream of project

over time. Assuming the worker cannot deal with all the projects instantaneously (a reason-

able assumption), then the worker has to choose how to deal with the excess. We assume

that, as cases are progressively assigned to the worker at rate α, she puts them in a queue of

inactive cases. The worker draws from this queue at rate ν. When a case is drawn from the

4For a review of the academic literature on this subject see Bellotti et. al. (2004).
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queue it is “put in production” along with all other already active cases. Finally, we assume

that the worker’s attention is divided in a perfectly equal fashion among all active cases,

in a process that parallels the “perfect task juggle” in Example 1. This modeling strategy

allows us to span the range between much task juggling (ν large, approaching α) and no

task juggling, close to “greedy” (ν low).

We will derive an exact formula for the production function which, given an effort rate, a

degree of complexity of projects, and a level of task juggling, yields an output rate. Having

an exact formula for the production function will allow us later to study strategic behavior

pertaining to task juggling. Of note, in this section we abstract from the possibility that

multitasking might cause the worker to forget; this additional effect of multitasking will be

introduced in Section 5.

3.1 The Model

The model lives in continuous time, starting from t = 0. At time 0 the worker has no

projects. Projects are assigned at rate α. There is a continuum of projects.

Each project takes X steps to complete. A project is characterized, at any point in time, by

its degree of completion x ∈ [0, X], which measures how far away the project is from being

completed. We call a project completed when x = 0. Note that, because x is a continuous

variable, we are assuming that there is a continuum of steps for each project. X can be

interpreted as measuring the complexity of the project, or the worker’s ability.

As soon as the worker starts working on a project, we say that the project becomes active.

The project stops being active when it is completed. At any time t, the worker has At
active projects, in various degrees of completion. The distribution ϕt (x) denotes the mass

of projects which are exactly x steps away from being done. By definition, the number of

active projects at time t is

At =

∫ X

0

ϕt (x) dx (1)

We assume that all active projects are moved towards completion at a rate ηt/At, where

ηt is the rate at which effort is exerted. Informally, this means that in the time interval

between t and t+ ∆, the worker’s work shaves off approximately (ηt/At) ∆ steps from each

active project.5 This formulation captures the idea that the worker divides a fixed amount

of working hours equally among all projects active at time t. This procedure means that the

worker is working “in parallel.” If all active projects proceed at the same speed, then after

5Note that this formulation requires At > 0.
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∆ has elapsed, the distribution ϕt (x) is translated horizontally to the left (refer to Figure

1), and so for ∆ “small enough” we can write intuitively

ϕt+∆

(
x− ηt

At
∆

)
= ϕt (x) .

To express this condition rigorously, bring ϕt (x) to the right-hand side, divide by ∆ and let

∆→ 0 to get
∂ϕt (x)

∂t
− ∂ϕt (x)

∂x

ηt
At

= 0. (2)

This partial differential equation embodies the assumption of perfectly parallel work on the

active cases.

Figure 1: The ϕt function

Note. The function ϕt is translated horizontally to the left as time passes. Newly opened cases are added to the right.

The grey mass of cases to the left of zero are completed.

The projects that fall below 0 (grey mass in Figure 1) are the ones that get completed within

the interval ∆. These are the projects whose x at t is smaller than ηt
At

∆. Therefore, the mass
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of output between t and t+ ∆ is approximately∫ ηt
At

∆

0

ϕt (x) dx.

To get the output rate ωt, divide this expression by ∆ and let ∆→ 0 to get

ωt = lim
∆→0

1

∆

∫ ηt
At

∆

0

ϕt (x) dx =
ηt
At
ϕt (0) . (3)

The worker is not required to open projects as soon as they are assigned. Rather, we allow

the worker to open new projects at a rate νt. A larger νt will, ceteris paribus, mean more

task juggling—more projects being worked on simultaneously. This νt is seen either as a

choice on the part of the worker, or as determined by lobbying, or else imposed by some

regulation. For ∆ small, the change in the mass of projects active at t is approximately

At+∆ − At = νt ·∆− ωt ·∆.

Divide both sides by ∆ and let ∆→ 0 to get the formally correct expression

∂At
∂t

= νt − ωt. (4)

Graphically, the mass of newly opened projects is squeezed in at the back of the queue in

Figure 1, just to the left of X, in whatever space is vacated on the horizontal axis by the

progress made in ∆ on the pre-existing open projects.

This completes the description of the production process. In the model, two variables are

interpreted (for now) as exogenously given: ηt and νt. The first describes how much the

worker works, the second how she works—how many projects she keeps open at the same

time. These two variables will determine, through the process described mathematically by

equations (1) through (4), the key variable of interest, the output rate ωt. This variable, in

turn, will determine the duration of a project and its completion time.6 Our first major task

is to uncover the law through which ηt and νt determine ωt. We turn to this next.

6The two (endogenous) functionsAt and ϕt (x) are, perhaps, of merely instrumental interest: they describe
the state of the worker’s docket at any point in time—how many projects he has open, and the degree of
completeness of each.

9



3.2 Derivation and Characterization of the Production Function

Definition 1 Fix X. We say that input and effort rates νt, ηt generate output rate ωt if

the quintuple of positive real functions [νt, ηt, ϕt (x) , At, ωt]t∈(0,∞)
x∈[0,X]

satisfies (1), (2), (3) and

(4).

The next theorem identifies the law through which νt and ηt determines ωt. Implicitly, then

the theorem identifies the production function. The result restricts attention to the case in

which νt and ηt are constant and equal to ν and η respectively.

Theorem 1 (production function) The pair of constant functions [νt = ν, ηt = η] gen-

erate ωt ≡ ω if the triple ν, η, ω solves

ω
X

η
− log (ω) = ν

X

η
− log (ν) . (5)

Proof. We start by guessing a functional form for ϕt (x) and At. Let

ϕ∗t (x) =
(ν − ω)

η
ω t e

ν−ω
η
x,

and

A∗t = (ν − ω) t.

One can verify directly that for any K,λ, the pair ϕt (x) = Kte
λ
η
x, At = λt solves (2) above.

Moreover, for any λ the triple ϕt (x) = Kte
λ
η
x, At = λt, ωt satisfies (3) if and only ifK = λ

η
ωt,

which implies ωt = ω. Finally, the triple νt, At, ω satisfies (4) if and only if λ = νt−ω, which

implies νt = ν. This shows that, for any ν, ω, the quadruple [ν, ϕ∗t (x) , A∗t , ω] satisfies all the

equalities except (1). However, we do not yet know which values of ν and ω are compatible

with each other along a growth path. We now show that the pair ϕ∗t (x) = Kte
λ
η
x, A∗t = λt

solves (1) if and only if X ν−ω
η

= log (ν)− log (ω) . Condition (1) reads

A∗t =

∫ X

0

ϕ∗t (x) dx.

Substituting ϕ∗t (x) and A∗t yields

λt =

∫ X

0

Kte
λ
η
x dx

=
η

λ
Kt

[
e
λ
η
X − 1

]
.
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Now substitute for K = λ
η
ω and λ = ν − ω and rearrange to get

ν

ω
= e

(ν−ω)
η

X .

Taking logs yields

(ν − ω)
X

η
= log (ν)− log (ω) .

Therefore, Theorem 1 is proved.

Equation (5) implicitly yields the production function we are seeking. A convenient feature

of the production function is that the output rate is constant (this is actually a subtle result,

as we discuss on page 1 in the appendix). We will now be studying the properties of the

production function.

Before we start, however, an observation. The functions ϕ∗t (x) , A∗t identified in Theorem 1

are only well defined if the input rate ν exceeds the output rate ω. Expressed in terms of

primitives, this condition is equivalent to ν ≥ η/X. (This equivalence is proved in Appendix

1.1.) The threshold η/X represents the “greedy” input rate, the smallest input rate at which

the worker is never idle. So our analysis is restricted to input rates such that the worker is

never idle. (See Appendix 1.1 for what happens when ν < η/X). From now on, we implicitly

maintain this “non-idleness” assumption.

Proposition 1 (comparative statics on the production function) For each pair

(ν, η/X) denote by Ω (ν; η/X) the unique ω < ν that is generated by ν, η through (5). Then

we have:

a) Ω (ν; η/X) is decreasing in ν.

b) Ω (ν; η/X) is increasing in η/X.

c) ∂Ω(ν;η/X)
∂ν∂η

< 0, which means that ν and η are strategic substitutes in Ω (ν; η/X) .

d) The function Ω (·; ·) is homogeneous of degree 1.

e) Ω (η/X; η/X) = η/X.

Proof. See the Appendix. Part e) is proved in Proposition 2 in Appendix 1.1.

Part a) captures the effect of task juggling: increasing the input rate ν reduces output.

Therefore setting ν as small as possible, provided that the worker is not idle, produces the

maximum feasible output rate. Maximal output is therefore achieved when ν = η/X. In that

case, part e) shows that the output rate equals η/X. This policy corresponds to the “greedy

algorithm,” and gives rise to a steady state which is analyzed in Proposition 2.
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Part b) simply says that if a worker works more then the output rate is larger.

Part c) deals with the complementarity of inputs in the production of the output rate. It

says that the returns to effort decrease when ν increases. Intuitively, this is because At is

larger and so an increase in effort needs to be spread over a greater number of projects.

Part d) is a constant-returns-to-scale result: if we scale both inputs by the same parameter r,

output increases by the same amount. can be interpreted as governing the pace at which the

system operates. Setting r > 1 means that the entire system is working at a faster pace: per

unit of time, we have more input, more effort, and more output, all in the same proportion.

Part e) identifies the “greedy” rate of input. Given η and X, that rate is ν = η/X. At this

rate, output is ω = η/X, the highest achievable output rate (given effort and ability).

We now define two measures of durations.

Definition 2 For a project assigned at t we define the duration Dt as the time which

elapses between t and the completion of the project. For a project opened at t (and thus

assigned at a time before t), we define completion time Ct the time which elapses between

t and the completion of the project.

The next result translates results about output into results about durations. The main

message is that task juggling increases durations.

Proposition 2 (a) Fix ω, ν, η. Then Ct = (ν−ω)
ω

t and Dt = (α−ω)
ω

t.

(b) Fix η, and let ω be generated by [ν, η]. Then Ct and Dt are increasing in ν.

Proof. See Appendix 1.1.

4 Strategic Determination of Degree of Task Juggling,

and Endogenous Effort

In the previous sections we have assumed that νt, the exogenous input rate, is constant

through time and, furthermore, that it exceeds the duration-minimizing “greedy” rate η/X.

We have not discussed how such a νt might come about. In this section we “micro-found” νt
by introducing a game in which the input rate is determined endogenously as an equilibrium

phenomenon. In this game νt will in fact turn out to be constant through time, and to
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exceed η/X. Therefore, this section microfounds the time-use behavior which was assumed

to be exogenous in the previous section.

The basic setup is that each project is “owned” by a different co-worker, supervisor, or

client who in each instant can lobby the worker to devote a fraction of effort to his project,

regardless of its order of assignment. The private benefit of lobbying is that the client avoids

its project waiting unopened and gets the worker working on it immediately. The social cost

of lobbying is that the worker distributes her effort among more projects. This will increase

the number of active projects, which slows down all projects. This externality, which is not

internalized by the lobbyists, gives rise to an inefficiency.

Clients are not allowed to use money to lobby; rather, the cost of lobbying per unit of

time is assumed to be fixed exogenously. We interpret this fixed cost as a sort of cost of

supervision, the cost of stopping by and asking “how are we doing on my project?” or of

exerting other kinds of pressures. We believe this formulation best captures the process

that goes on within organizations, where monetary bribes are not allowed. Also, this type

of lobbying process might take place after several principals have signed separate contracts

with an agent, for example after several homeowners have contracted for the services of a

single building contractor and now each is pushing and cajoling the contractor to finish her

home first.

The model is as follows. The worker’s effort η is constant through time and fixed exogenously

(we will relax the second assumption later). Lobbying is modeled as a technology whereby,

at any instant t, a client can pay κ ·∆ and force activity on his project during the interval

(t, t+ ∆) . Activity on the project means that the project moves forward by (η/At) ·∆. The

rate κ is interpreted as the per-unit of time cost of lobbying. If κ is not paid then the project

sits idle at some x until either lobbying is restarted or the never-lobbied projects of its

vintage (those assigned at the same time) catch up to x, at which time the project becomes

active again and stays active without any need of, or benefit from, further lobbying. In

every instant, ν “never lobbied” projects are opened, in the order they were assigned. Once

a never-lobbied project is opened, it forever remains active whether or not it is lobbied. The

rate ν represents the input rate that would prevail in the absence of any lobbying by the

clients.7 Here At denotes the mass of all projects active in instant t and it is composed of

the two type of projects: all those that are lobbied in that instant, and some that are not.8

7One could be concerned that in equilibrium there might not be enough never-lobbied projects to open,
and that therefore it would be more precise to state that in every instant the worker opens the minimum of
ν never-lobbied cases and the balance of the never lobbied projects. However, we will see that in equilibrium
the balance of never-lobbied projects never falls below ν.

8Under these rules, for a case that has been lobbied in the past, two scenarios are possible in instant t.
First, the case may have been “caught up” by the never-lobbied cases of its own assignement vintage; in
other words, the case was lobbied in the past, but then the lobbying lapsed and the case is now at the same
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We assume that clients minimize B times the duration of their project, from assignment to

completion, plus κ times the time spent lobbying. B represents the rate of loss experienced

by a client whose project is not completed. We assume no discounting for simplicity.

Since our goal is to explain why lobbying makes the input rate ν inefficiently large, let’s tie

our hands by stipulating that the input rate of never-lobbied projects ν is “low,” that is,

it belongs to the interval
[
0, η

X

]
. This choice of baseline ensures that any slowdown in the

output rate cannot be attributed to an excessively large ν.

Projects are indexed by the time τ they are assigned and by an index a that runs across the

set of the α projects assigned at time τ. We now introduce the notion of lobbying strategy

and lobbying equilibrium.

Definition 3 A lobbying strategy for project (a, τ) is a measurable indicator function

Saτ (t) defined on the interval [τ,∞) which takes value 1 if project a is lobbied in instant t,

and is zero otherwise. A lobbying equilibrium is a set of strategies such that, for each

project (a, τ) , the strategy Saτ (t) minimizes κ times the time spent lobbying plus B times

the project’s duration.

Equilibrium strategies could potentially be quite unwieldy, featuring complex patterns of

activity interspersed with periods of no lobbying. Lemma 3 in Appendix 1.2 characterizes

equilibrium strategies, achieving considerable simplification. Based on that result, we con-

jecture (and show existence below) of simple equilibria in which a time-invariant fraction z

of the α newly assigned projects is never lobbied, and the remaining fraction (1− z)α is

lobbied immediately upon assignment and then continuously until they are done. We will

call these equilibria constant-growth lobbying equilibria. Note that the definition of

constant-growth lobbying equilibrium does not restrict the strategy space.

If players adopt the strategies of a constant-growth lobbying equilibrium, the input rate ν (z)

is determined by z via the identity

ν (z) = ν + (1− z)α.

The percentage of lobbyists (1− z∗) , and hence the input rate ν (z∗) , are determined in

equilibrium.

The equilibrium construction is delicate. In every instant each client has a choice to lobby

or not, and so in equilibrium each client has to opt to follow the equilibrium prescription.

stage of advancement (same x) as its never-lobbied assignment vintage. Such a case is worked on without
the need for further lobbying and proceeds at speed η/At. The second scenario is that the case has not been
caught up at time t. In this scenario the case is worked on in the interval ∆ and makes η∆/At progress if
κ∆ is spent; otherwise, the case does not proceed.

14



Moreover, every newly assigned client must be indifferent between lobbying and not. The

cost of lobbying is proportional to the time the project is expected to require lobbying,

which is the time that active projects take to get done. The drawback of not lobbying is the

additional delay incurred from not “skipping the line.”

Proposition 3 Suppose α > η
X
. Then, for any ν and any cost of lobbying κ,

a) a constant-growth lobbying equilibrium exists;

b) in any constant-growth lobbying equilibrium ν (z∗) > η
X
, i.e., the input rate exceeds the

duration-minimizing one;

c) the constant-growth lobbying equilibrium is unique;

d) the fraction (1− z∗) of projects that are lobbied in equilibrium is increasing in α
ν

and η
X
,

and decreasing in κ
B

;

e) the equilibrium input rate ν (z∗) is decreasing in κ
B

and increasing in α
ν

and η
X
.

Proof. See the Appendix.

Part a) can be viewed as providing a microfoundation for the behavioral assumption of

constant νt which was maintained through Section 3. What was previously a behavioral as-

sumption about the worker is now the outcome of lobbying equilibrium in which, in principle,

νt need not be constant.

Part b) of the proposition says that, no matter how large the cost of lobbying, input rates

will always exceed the “greedy” rate, and so we will have task juggling. The intuition is clear:

if input rates were efficient, say ν ≤ η/X, then completion time would be zero. This means

that the cost of lobbying would be zero and, also, that a project which is lobbied would be

completed instantaneously. Therefore lobbying is a dominant strategy, which would give rise

to an input rate ν = α > η/X. Thus an equilibrium input rate ν cannot be smaller than

η/X.

Part e) of the proposition says that if a worker is less susceptible to lobbying, which we can

model as κ being larger, then the worker will have a smaller input rate and a larger output

rate. Moreover, there is more lobbying when the assignment rate is larger, which is intuitive

because then the time spent waiting for one’s project to be opened becomes larger. Finally,

harder working workers and easier projects will give rise to more lobbying. Intuitively, this

is because then the completion time gets shorter relative to the duration of a non-lobbied

project.

A few words of comment on the causes of inefficiency. The source of a slowdown in output

is that, if an additional project is lobbied, that project is able to obtain a small fraction of
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effort, taking it away from other active projects. In this respect, our model is analogous to

models of common resource extraction (“common pool” models) where utilizers cannot be

excluded from the pool. We think this is a natural modeling assumption in many cases.

Finally we turn to the case in which η is chosen by the worker, rather than being exogenously

given. Suppose η is determined as the solution to the problem

max
η

Ω
(
ν (z∗) ;

η

X

)
− c (η) . (6)

According to this formulation, the worker chooses η by trading off the output rate (increasing

in η) against a cost of effort c (η). Note that since z∗ is taken as given in problem (6), the

worker does not behave as a Stackelberg leader. This assumption reflects the idea that the

worker cannot commit to maintain a given level of effort regardless of lobbying.

Definition 4 A lobbying equilibrium with endogenous effort is a lobbying equilibrium

in which effort η∗ solves (6).

To ensure that the equilibrium effort level is greater than zero and smaller than αX we

assume c′ (0) = 0, and c′ (αX) =∞.

Proposition 4 Consider a lobbying equilibrium with endogenous effort. If κ increases, then

the input rate decreases and the worker’s effort increases.

Proof. See the Appendix.

This proposition highlights another dimension of inefficiency associated with lobbying. Not

only does lobbying slow down projects, but it also induces the worker to slack off. The

intuition behind this result lies in the “strategic substitutes” property stated in Proposition

1 c).

5 Extension: Forgetful Worker

In this section we deal with the case in which, as completion time grows and any open project

is worked on less and less frequently per unit of time, the worker progressively forgets about

the details of each individual project. Thus, every time the worker picks up a project again,

she needs to spend some additional effort to “remind herself” of where she left off before she

can make progress.
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We model this phenomenon by assuming that in the time interval between t and t+ ∆, the

worker’s effort shaves off approximately η
At+Ft

∆ steps from each active project. The factor

Ft > 0 captures a “forgetfulness penalty.” We assume that Ft becomes larger over time;

its exact form of will be specified later. The presence of forgetfulness requires amending

equations (2) and (3) from Section 3. The two amended equations read

∂ϕt (x)

∂t
− ∂ϕt (x)

∂x

η

At + Ft
= 0, (7)

and

ωt =
η

At + Ft
ϕt (0) . (8)

Equations (1) and (4) remain unchanged.

Definition 5 Fix the function Ft. We say that the pair ν, η generate ω if the quintuple

[ν, η, ϕt (x) , At, ω] satisfies conditions (1), (4), (7) and (8).

Now let us specify Ft. We want to capture the notion of “time elapsed between the accom-

plishment of two consecutive steps,” even though in our model steps are continuous and so

strictly speaking there are no two consecutive steps. In our model, instead, we can think

about the time that elapses between the accomplishment of given percentiles of completion,

say between 20% and 30% of completion. A large completion time Ct corresponds to bigger

stretches of time elapsing between the achievement of any two percentiles of completion,

so we assume that the “forgetfulness penalty” Ft is proportional to the completion time Ct
according to a factor of proportionality f. Formally, we assume

Ft = f · Ct

= f
ν − ω
ω

t.

where the second equality follows from Proposition 2, and the third is simply a definition of

the real number F. Note that, by making Ft proportional to Ct, we have made Ft endogenous.

Proposition 5 Suppose the worker is forgetful. Then:

(a) The pair ν, η generates ω if the following equation is satisfied:

log (ν)− log (ω) =
X

η

(
ν − ω + f

ν − ω
ω

)
. (9)

(b) If ν > η
X

and the worker is forgetful then the output rate is smaller than in the one

described in Section 3.2.
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Proof. See the Appendix.

6 Empirical Application

In this section we take to data the theoretical model of Section 3. The goal is to see whether

the main result in that section, namely equation (5), fits the data at hand. How could such

a “mechanical” model not fit the data? Although the model does not involve maximization,

it nevertheless relies on a number of assumptions about the environment and the worker’s

behavior. For example, it is assumed that certain choice variables (worker effort, opened

cases) are stationary over time; that all open cases receive the same amount of worker effort;

and that all cases require the same effort to dispose. Clearly, these assumptions can’t hold

literally in any real-world workplace. In this sense, the model is an approximation of reality,

both in terms of worker’s actions and in terms of the work environment. Is the approximation

valid “in the wild,” in the sense that equation (5) fits the data? This section addresses this

question.

The data refer to the production process of a panel of Italian labor law judges in the Milan

labor court.9 Adjudication in this court takes place in a series of distinct steps (involving

motions, hearings, etc.). The interleaving of these steps across different trials raises the

possibility that a judge may, as in Example 1, work on too large a number of cases at a point

in time. The possibility that task juggling may significantly reduce judicial productivity,

which in Italy is a major policy concern, gives this empirical application considerable policy

relevance.10

Figure 2 suggests visually that judges arrange their work process in a manner consistent with

task juggling. Averaging across judges, the stock of Active Cases (cases which have received

a first hearing but are not yet closed; see the bottom central panel of the figure) grows at

a steady pace, from about 150 in the year 2000 to more than 300 in 2005. In contrast, the

duration-minimizing “greedy algorithm” described in Example 1 would lead to a constant

number of active cases. Furthermore, consistent with the model’s predictions, we see a steady

increase of Completion Time Ct (computed as the number of days elapsing between the

date in which the first hearing is held and the date in which the case is completed; see

bottom right panel in the figure). That is, it takes judges longer and longer to work through

a given case. Again, this finding suggests that judges do not follow the “greedy algorithm,”

9For details on this data see Appendix 2 and Coviello et al. (2012).
10In Italy in 2009, civil trials lasted on average 960 days in the court of first instance, and an additional

1,509 days in court of appeals (if appealed). Such durations place Italy at n. 88 in the world in “speed of
enforcing contracts” as measured by the Doing Business survey of the World Bank—behind Mongolia, the
Bahamas, and Zambia.
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because under that procedure completion times would not increase over time. In sum, Figure

2 suggests that these judges do engage in task juggling.

Figure 2: Temporal evolution of the main stock and flow variables
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Note. All variables are defined as judges quarterly averages. New Opened Cases are defined as the number of cases that receive

the first hearing in the quarter. Standardized effort is defined as the ratio between the number of hearings held by the judge in

a quarter for any case (independently of the time of assignment) and the number of hearings that were necessary to decide the

cases assigned to the judge in the quarter. Duration is defined as the number of days elapsing between the filing date and the

date in which the case is completed. Active Cases are defined as the number of cases which have received a first hearing but

are not yet closed. Completion Time is defined as the number of days elapsing between the date in which the first hearing is

held and the date in which the case is completed. Dotted lines represent sample averages.

As interpreted through the theory in Section 3, therefore, Figure 2 suggests that the outcome

of interest, duration Dt (computed as the number of days elapsing between the filing date

and the date in which the case is completed; see bottom left panel in the figure) might

actually be reduced by more judicious work practices without adding manpower. If true, this

would have important policy consequences. However, a skeptical critical reader might look

at Figure 2 and find some discrepancies with the theory in Section 3. For example, there is

considerable seasonality of the “flow”variables in the top panel and a slight upward trend in

them. So the model’s assumptions are, strictly speaking, violated. Similarly, Duration and
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Completion time in the bottom panel, while trending up, are not exactly straight lines as

predicted by Proposition 2. None of these discrepancies ought to be unexpected: no theory

can be expected to match the data exactly.And yet, these discrepancies raise the interesting

question of whether the “production function” given by equation (5), which is the main

result of Section 3, is nevertheless a good description of the data. We address this question

directly now.

In Figure 3 we portray graphically equation (5). We denote the left-hand side of equation

Figure 3: Graphical Representation of the Equilibrium Equation (5)
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ω − log (ω), and h(ν; η

X
) ≡

(
X
η

)
ν − log(ν),

which is equation (5) in the paper. In the left panel, each dot represents the average of the quarter observations for each judge.

In the right panel, instead, all quarters observations for each judge are considered separately, so that each dot represents a

judge in a quarter. The dashed lines (text boxes) report the predicted linear fit (estimated coefficients and standard errors in

parentheses) of equation h(ω; η
X

) = α+ βh(ν; η
X

) + ε, in the data.

(5) by h(ω; η/X) and its right-hand side by h(ν; η/X). The figure plots the left hand side

on the vertical axis and the right hand side on the horizontal axis. If the equation held

exactly, all the points should lie on the 45 degree line. In the left panel of Figure 3, each

dot represents the average of the quarter observations for each judge. In the right panel,

instead, all quarters observations for each judge are considered separately, so that each dot
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represents a judge in a quarter. The caption of the figure describes how the variables are

constructed in each panel. In both panels, the theoretical relationship appears to hold very

tightly. The points are very closely aligned with the 45 degree line. In fact, when we estimate

the regression

h(ω; η/X) = α + βh(ν; η/X) + ε (10)

and test the joint hypotheses that α = 0 and β = 1 , the null can never be rejected

independently of whether the regression line is fitted on cross sectional data, or on panel

data with and without judge fixed effects. As shown in Table 1 the P-values of the tests are

0.22, 0.10 and 0.12, respectively for these three specifications. An alternative testing strategy

delivering similar results is a simple test for the equality of the means of the random variables

on the two sides of equation (5). Also in these tests we can never reject the null, with p-values

that are respectively equal to 0.44 and 0.42, respectively for the cross-sectional dataset of 21

judges and for the panel dataset of 380 quarter-judge observations.

Table 1: Test of the equilibrium equation (5)

Data Cross-section Panel-OLS Panel-FE
(1) (2) (3)

β : h(ν; η
X

) 0.98 0.99 0.98
(0.01) (0.01) (0.01)

α : Constant -0.07 -0.06 -0.06
(0.04) (0.03) (0.03)

H0 : α = 0 & β = 1 0.22 0.12 0.10
R2 0.99 0.98 0.98
Number of judges 21 21 21
Observations 21 380 380

Notes. Each column reports coefficients (and standard errors in parentheses) estimated
using regressions of the form:

h(ω;
η

X
) = α+ βh(ν;

η

X
) + ε

where h(ω; η
X

) ≡
(
X
η

)
ω− log (ω), and h(ν; η

X
) ≡

(
X
η

)
ν− log(ν). H0 : α = 0 & β = 1

is the p-value of the test of the joint hypothesis that α = 0 and β = 1.

It is important to realize that, using the same tests, we instead always strongly reject the

null hypotheses that other functions of ν and ω are equal, like for example, ν = ω and
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(
X
η

)
ν =

(
X
η

)
ω. Only the specific functional form suggested by our theoretical model, i.e.

equation (5), fits the data well.

Table 2: Are judges forgetful?

Data Cross-section Panel-OLS Panel-FE
(1) (2) (3)

δ : h(ν; η
X

) 0.97 1.00 0.99
(0.01) (0.01) (0.01)

f : q(ν, ω; η
X

) 3.18 3.24 2.59
(1.44) (0.80) (0.82)

γ : Constant -0.11 -0.02 -0.03
(0.04) (0.03) (0.03)

H0 : γ = 0 & δ = 1 0.06 0.55 0.44
R2 0.99 0.98 0.98
Number of judges 21 21 21
Observations 21 380 380

Notes. Each column reports coefficients (and standard errors in parentheses) estimated
using regressions of the form:

h(ω;
η

X
) = γ + δh(ν;

η

X
) + fq(ν, ω;

η

X
) + µ

where h(ω; η
X

) ≡
(
X
η

)
ω − log (ω), and h(ν; η

X
) ≡

(
X
η

)
ν − log(ν), and q(ν, ω; η

X
) ≡(

X
η

) (
ν−ω
ω

)
is the indicator of forgetfulness. H0 : γ = 0 & δ = 1 is the p-value of the

test of the joint hypothesis that γ = 0 and δ = 1.

We experimented also with a slightly richer specification of the production function, the one

derived in equation (9). This specification allows judges to be forgetful. The forgetfulness

parameter f was estimated using the following modified version of equation (10):

h(ω; η/X) = γ + δh(ν; η/X) + fq(ν, ω; η/X) + µ (11)

where q(ν, ω; η
X

) ≡
(
X
η

) (
ν−ω
ω

)
. Also in this specification we still cannot reject the hypothesis

that γ = 0 and δ = 1, as the theory predicts. Moreover the value of the forgetfulness

parameter f is estimated to be positive and significant. Therefore, we cannot reject the

hypothesis that judges forget a case’s details long after it was last treated. The estimates

are reported in Table 2.
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In sum, this section shows that the model of Section 3 fits the data quite well in this particular

application, in the sense that equation (5) holds tightly in the data. True, this empirical

analysis cannot answer the question of what leads judges to juggle hearings.11 Nevertheless,

it is important to know that the model has empirical validity. If this model can be similarly

validated in other empirical settings, the model could become a benchmark in a future field

of the measurement of worker time use.

7 Conclusion

Task juggling is prevalent in the workplace. We have developed a theory of a worker who

deals with overload by choosing how many projects to work on simultaneously. Working on

too many projects at the same time reduces the worker’s output, for given effort and ability.

We have investigated an “interdependent workplace” environment which will lead the worker

to behave in this inefficient way. Moreover, we have shown that task juggling and effort are

strategic substitutes, suggesting that when effort is not contractible, whatever worsens task

juggling will also indirectly decrease effort.

A noteworthy feature of our model is that, unlike queuing theory, we look at an environment

in which the worker is never idle. We do this for the purpose of realism: judges in Italy

are never in a situation of no backlog, and the same is true of many other workers.12 An

implication of this assumption is that in our model the worker’s backlog and duration grow

without bound as time goes on. We do not think of this trend as realistic in the long run, as

long as the workforce can costlessly be expanded. But we interpret the model as a description

of short and medium run congestion effects, such as those portrayed in Figure 2.

Our analysis does not touch on the possible counter-measures that might reduce task jug-

gling. A principal, for example, might want to control an agent’s task juggling through

11One reason is that judges are required by law to open all cases within 60 days of their being assigned,
as we show in our companion paper Coviello et al. (2012). This rule, we believe, is intended to ensure that
judges don’t shirk. In principle judges could satisfy this requirement by only holding the first hearing and
then leaving the case aside. If they did so, then the theory would not yield equation (5). Since we find
empirically that equation (5) does describe the data, we conclude that judges in fact are behaving as in our
model: once a case is open, it is not left aside. Our analysis, therefore, demonstrates that judges do not
interpret the legal requirement “cleverly.” The question is why. Perhaps the lobbying model in Section 4
can help provide the answer. While the judges under study are not lobbied explicitly, in our conversations
they told us that they do feel a psychological pressure to be seen by the parties as working on each case.
By pressuring workers to work on all assigned cases, this psychological pressure operates in ways analogous
to the lobbying model of Section 4. That being said, the present section abstracts from the reasons that
may lead a judge to juggle tasks, and hence this section does not speak directly to the theory developed in
Section 4.

12Public health care systems in many countries, for example, also have permanent queues for various
treatments.
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incentives. If so, then could task juggling be eliminated? We think not. Casual observation

(see the Introduction) and empirical work (see Section 6) suggest that, often, task juggling

takes place. Why can’t incentives work? We think the case of the judiciary is paradigmatic.

In the judicial setting, there is a long tradition/culture of suspicion of explicit or implicit

incentives. Promotions and pay raises among Italian judges, for example, are largely de-

termined by seniority and almost not at all by productivity or quality measures. Similarly,

the president of the Tribunal typically interprets his role in a very hands-off way. This in-

stitutional culture reflects the idea that strong incentives might lead judges to distort their

decisions. The very notion that judges might be subject to a principal is seen as possibly

erosive of judicial independence. In the language of economic theory, we would say that the

Holmstrom-Milgrom multitasking distortions are so severe, that principals and incentives

simply need to recede into the background. We believe that this is an important lesson from

the case study, and that these same distortions apply quite broadly, if not always with the

same power. Whenever knowledge workers have a monopoly over expertise (as do physi-

cians, scientific researchers, etc.), Holmstrom-Milgrom multitasking kicks in, and providing

incentives becomes dicey. Under this set of circumstances, weak incentives are often optimal

and so, frequently, agents end up being relatively unconstrained in their ability to organize

their own work schedule. In this case agents can fall prey to task juggling.

We view the single-worker model presented here as a building block for future research

of two types. First, empirical work, which might take advantage of increasingly available

workplace micro-data to quantitatively evaluate the inefficiencies caused by task juggling,

and to perform counterfactual calculations. In this paper we have presented a way of using

the data to validate the model. In our companion paper (Coviello et al. 2012) we use

this framework to estimate the causal effect of an exogenously induced increase in parallel

working. We find that the slowdown in output resulting from task juggling is large.

Second, we foresee the possibility of theoretical work extending this analysis to a multi-worker

hierarchical worplace.
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