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1 Introduction

In labor economics and more generally in the analysis micro-economic datasets

we have often to deal with phenomena that are intrinsically discrete or that

are measured in a discrete fashion.

• End-of-highschool decision: go to college or drop out.

• Female’s decision to participate in the labor market.

• Employment or unemployment after training.

• Self-employment of wage work.

• Welfare participation.

• Consumer choices.

• Means of transportation.

• Marriage.

• Crime.

• Voting.

• Locational decisions of firms.

• Entering the EU.

• ...

It is convenient to distinguish between:

• Binary choices: the dependent variable can take two values.

• Multiple choices: the dependent variable can take more than two values.
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2 Binary choices

2.1 Theory

2.1.1 Basic framework and notation

Consider a sample of individuals indexed by i = {1, 2, 3, ...N}.

For each individual we observe the binary variable:

Y =





1 with probability Pr(Y = 1) = P

0 with probability Pr(Y = 0) = 1 − P
(1)

Let X be the row vector of K potential factors (including the constant) that

explain which outcome prevails. For individual i we observe the vector Xi.

We denote matrices in bold face characters. So X is the N × K matrix of
observations on the K explanatory factors for the N individuals.

Our objective is to estimate the effect of the factors X on the probability of

observing the outcome Y = 1:

γ =
dP

dX ′ . (2)

where γ is a column vector of K marginal effects

Note that:

E(Y ) = 1P + 0(1 − P ) = P (3)
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2.1.2 Linear probability model

The linear probability model assumes that P is a linear function of X :

P = F (X, β) = Xβ (4)

where β is a column vector of K parameters and X includes a constant term.

Using this assumption and equation 3:

Y = E(Y ) + (Y − E(Y )) (5)

= P + (Y − E(Y ))

= Xβ + ε

where

ε =





1 −Xβ with probability P

−Xβ with probability 1 − P
(6)

The marginal effect of X on the P is therefore:

γ =
dP

dX ′ = β (7)

which we can estimate using OLS in equation 5.

Advantages:

• Computational simplicity.

• Very little structure or assumptions imposed on the data.
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Disadvantages:

i. Heteroschedasticity

The mean of the error term is zero by construction:

E(ε) = (1 −Xβ)P + (−Xβ)(1 − P ) (8)

= (1 −Xβ)Xβ + (−Xβ)(1 −Xβ) = 0.

However, the variance is given by:

E(ε2) = (1 −Xβ)2Xβ + (−Xβ)2(1 −Xβ) (9)

= (1 −Xβ)Xβ

which shows that the error term is heteroschedastic. Observations for

which Pi = Xiβ is close to 1 or 0 have relatively low variance while

observations with Pi = Xiβ close to .5 have relatively high variance.

• Note that it is not advisable to use GLS because of next problem

ii. Predicted probabilities P̂i = Xiβ̂ may lie outside the [0,1] range

This may produce non-sense probabilities for forecasting purposes and
negative estimated variances so that GLS cannot be implemented.

iii. Estimates of β are fairly sensitive to extreme realizations of X

iv. Hypothesis testing
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2.1.3 Non-linear probability model and the latent index function

To avoid the problem of out-of-range probabilities in the linear probability
model, we can assume that:

P = Pr(Y = 1) = F (Xβ) (10)

where F is a (symmetric) cumulative distribution such that:

lim
Xβ→+∞

F (Xβ) = 1 (11)

lim
Xβ→−∞

F (Xβ) = 0

One way to introduce this assumption is to consider an unobservable index

function which determines the value of the binary outcome (note that the
choice of the threshold is irrelevant):

Y ∗ = Xβ + ε (12)

Y =





1 if Y ∗ ≥ 0
0 if Y ∗ < 0

(13)

Assume that ε is distributed according to F :

Y =





1 with Pr(ε ≥ −Xβ) = F (Xβ)
0 with Pr(ε < −Xβ) = 1 − F (Xβ)

(14)

Given these assumptions, the marginal effect of X on P is:

γ =
dP

dX ′ = F ′β = fβ (15)

where f is the density function of F . Note that F ′ and f are scalar functions

of Xβ. In contrast with the linear probability model, an estimate of β is

not enough to estimate the marginal effect: γ has to be evaluated at some

realization of X . (See below page 11.)
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2.1.4 Estimation of non-linear probability models

Using the Maximum Likelihood approach, the likelihood function is:

L = Pr(Y1 = y1, Y2 = y2, ...YN = yN) (16)

=
∏

yi=0
[1 − F (Xiβ)]

∏

yi=1
F (Xiβ)

=
N∏

i=1
[1 − F (Xiβ)]1−yi F (Xiβ)yi (17)

where yi = {0, 1} is the realization of the binary outcome Yi.

Taking logs:

ln(L) =
N∑

i=1
[(1 − yi) ln(1 − F (Xiβ)) + yi ln(F (Xiβ))] (18)

The first order conditions for the maximization are:

∂ln(L)

∂β′ =
N∑

i=1


yif(Xiβ)

F (Xiβ)
+

−(1 − yi)f(Xiβ)

1 − F (Xiβ)


Xi = 0 (19)

The solution of this system gives the vector of ML estimates β̂.

The asymptotic covariance matrix V of the β is the inverse of the Hessian:

V = −H−1 =


∂

2ln(L)

∂β∂β′



−1

(20)

which is a K ×K matrix.
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Coefficients, probabilities and marginal effect

In the linear probability model the coefficients β coincide with the marginal

effect of the factors X on P .

In the non-linear latent index model the coefficients β represent just the
marginal effect of the factors X on the unobservable index Y ∗, which may

not say much.

We are interested in estimates of:

The probability of the outcome:

Prob(Y = 1) = P = F (Xβ) (21)

Asy. Var [P ] =

[
∂F

∂β′

]
V

[
∂F

∂β′

]′
= f2XVX ′ (22)

which is a scalar.

The marginal effects:

γ =
dP

dX ′ = fβ (23)

Asy. Var [γ] =

[
∂γ

∂β′

]
V

[
∂γ

∂β′

]′
(24)

which is a K ×K matrix.

See the rules and notation for matrix differentiation in Greene (1997). Note

that f is a function of Xβ; hence, to estimate the probability of the outcome

and the marginal effects we need an estimate of β and some realization of X .
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At which X should we evaluate the estimates of P and γ?

We can compute P̂ and γ̂:

i. for each i and then take the averages over all the observations;

ii. for the sample mean of the observations Xi.

iii. for a particularly relevant observation (median, other percentiles).

iv. for an artificially created individual with values of X defined by us.

Note that solutions 1 and 2 are asymptotically equivalent but may differ in

small samples.

Marginal effects of dummy variables

The marginal effect of a dummy should be computed as the difference between
the estimated probabilities evaluated at the two values of the dummy (keeping

the other X constant).
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2.1.5 Goodness of fit

An analog of the R2 is the log-likelihood ratio index.

LRI = 1 − ln L

ln L0
(25)

where ln L0 is the value of the log-likelihood computed with only a constant
term. This is sometime called Pseudo-R2.

However, it may be misleading because LRI = 1 only when Xiβ explodes to

+∞ or −∞, which may actually be indicative of a flaw of the model.

A model may tell us that an increase in X significantly increases the Pr(Y =

1) and yet have little explanatory power on which yi is actually going to be
equal to 1.

An F test on the significance of the parameters is a better indication of the

explanatory power of the model.

Another measure of fit: the % of ones hit with the following prediction rule:

Ŷi = 1 if P̂i > P ∗ (26)

with P ∗ equal for example to 0.5.

This may be misleading as well: it could do worse than the the naive rule

Ŷi = 1 if the proportion of 1 in the sample is > 0.5 (27)
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2.1.6 Probit model

When F is assumed to be standard normal we obtain the Probit model.

Pr(Y = 1) = F (Xβ) =
∫ Xβ

−∞
φ(t)dt (28)

= Φ(Xβ)

Log-likelihood:

ln(L) =
N∑

i=1
[(1 − yi) ln(1 − Φ(Xiβ)) + yi ln(Φ(Xiβ))] (29)

First order conditions:

∂ln(L)

∂β′ =
N∑

i=1
λiXi =

N∑

i=1


qiφ(qiXiβ)

Φ(qiXiβ)


Xi = 0 (30)

where qi = 2yi − 1.

Hessian:

H =
∂2ln(L)

∂β∂β′ =
N∑

i=1
−λi(λi +Xiβ)X ′

iXi (31)

Estimated variance of the coefficients:

V = −H−1 (32)
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Probability of the outcome :

Prob(Y = 1) = P = Φ(Xβ) (33)

Asy. Var [P ] =

[
∂Φ

∂β′

]
V

[
∂Φ

∂β′

]′
= φ2 XVX ′ (34)

which is a scalar.

Marginal effect:

γ =
dP

dX ′ = φ(Xβ) β (35)

Asy. Var [γ] =

[
∂γ

∂β′

]
V

[
∂γ

∂β′

]′
(36)

= φ2 [I − (Xβ)βX)] V [I − (Xβ)βX)]′ (37)

which is a K ×K matrix. Note that, for any z, dφ(z)
dz = −zφ(z).

See the rules and notation for matrix differentiation in Greene (1997). In all
the expressions above X is a row vector of observations on the explanatory

factors. Note that Φ and φ are functions of Xβ.

In order to estimate the probability of the outcome and the marginal effects

we need the Maximum Likelihood estimate of β and some realization of X
chosen by us (see page 11: a specific individual i, the sample mean, etc...)
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Unit variance and homoschedasticity assumptions for ε

To obtain the probit specification we have assumed that the distribution F

is a standard normal and therefore σε = 1.

If F is such that σε 6= 1:

Pr(Yi = 1) = Pr(εi ≥ −Xiβ) (38)

= Pr(
εi
σε

≥ −Xi
β

σε
)

= φ(Xi
β

σε
)

given that ε
σε

is now distributed as a standard normal and everything else
follows as before.

Hence, the assumption of unit variance is equivalent to say that:

• we cannot identify the variance of ε;

• we can only identify β
σε

;

• the absolute size of the estimated coefficients in a probit does not say

much;

• the comparison between estimated coefficients may say more;

• in any case it is better to look at the marginal effects and not at the

estimated coefficients;

• since we are interested in marginal effects also heteroschedasticity is

less problematic than one may think, if, for example, it takes the form

σε = σg(Xi).
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2.1.7 Logit model

When F is assumed to be logistic we obtain the Logit model.

Pr(Y = 1) = F (Xβ) =
eXβ

1 + eXβ
(39)

= Λ(Xβ)

Note that in this case:

F ′(Xβ) = f(Xβ) =
eXβ

(1 + eXβ)2 (40)

= Λ(Xβ)[1 − Λ(Xβ)]

where [1 − Λ(Xβ)] = 1
(1+eXβ )

Log-likelihood:

ln(L) =
N∑

i=1
[(1 − yi) ln(1 − Λ(Xiβ)) + yi ln(Λ(Xiβ))] (41)

First order conditions:

∂ln(L)

∂β′ =
N∑

i=1
(yi − Λ(Xiβ))Xi = 0 (42)

Hessian:

H =
∂2ln(L)

∂β∂β′ =
N∑

i=1
Λi(1 − Λi)X

′
iXi (43)

Estimated variance of the coefficients:

V = −H−1 (44)
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Probability of the outcome:

Prob(Y = 1) = P = Λ(Xβ) =
eXβ

1 + eXβ
(45)

Asy. Var [P ] =

[
∂Λ

∂β′

]
V

[
∂Λ

∂β′

]′
= [Λ(1 − Λ)]2 XVX ′ (46)

which is a scalar.

Marginal effect:

γ =
dP

dX
= [Λ(1 − Λ)] β (47)

Asy. Var [γ] =

[
∂γ

∂β′

]
V

[
∂γ

∂β′

]′
(48)

= [Λ(1 − Λ)]2 [I + (1 − 2Λ)βX)] V [I + (1 − 2Λ)X ′β′)]′(49)

which is a K ×K matrix.

See the rules and notation for matrix differentiation in Greene (1997). In all

the expressions above X is a row vector of observations on the explanatory

factors. Note that Λ is a function of Xβ.

In order to estimate the probability of the outcome and the marginal effects
we need the Maximum Likelihood estimate of β and some realization of X

chosen by us (see page 11: a specific individual i, the sample mean, etc...)
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Effects on odds ratios in the Logit model

The Logit model is convenient for a presentation of results in terms of the

effects of X on the odds of the outcome Y = 1:

Ω(Y = 1|X) =
P

1 − P
=

Λ

1 − Λ
= eXβ (50)

Given two realizations of X , say X1 and X0, we can define the odds ratio

Ω(Y = 1|X1)

Ω(Y = 1|X0)
= e(X1−X0)β (51)

This statistics tells us how the odds of observing Y = 1 change when X

changes from X0 to X1.

Stata offers the possibility to display the estimated coefficients in this odds
ratio format. For example for the variable j:

eβj (52)

tells us how the odds of observing Y = 1 change when Xj changes by one

unit.

• If eβj > 1, the variable j increases the odds of observing Y = 1.

• If eβj < 1, the variable j decreases the odds of observing Y = 1.

This way of presenting results is particularly convenient for dummy explana-

tory variables.
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2.1.8 Comparison between linear probability, probit and logit models

The estimated coefficients will clearly differ, but the marginal effects should
be fairly similar in general.

Logistic distribution has fatter tails.

We should expect greater differences in case of very few or very large obser-

vations with Y = 1.

Choice most often based on practical considerations.

See Table 19.2 in Greene (1997) for a comparison of results.
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Analysis of proportions Data

Using equation 51, we observe also that the log of the odds Ω is:

ln(Ω) = ln

(
P

1 − P

)
= ln

(
Λ

1 − Λ

)
= Xβ (53)

This suggests a convenient way to estimate the determinants of dependent

variables which are expressed as proportions:

• Proportion of votes for a political party in different elections.

• Proportion of unemployed workers in different regions.

• Proportion of individuals committing crime in different cities.

• ...

In other words, this is convenient when we do not observe the individual

outcomes Yi but only the proportion Pj of outcomes equal to 1 among the
individuals in group j.
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2.1.9 Maximum score estimator

In section 2.1.5 we have discussed the lack of satisfactory measures of the
goodness of fit for ML estimates of binary choices models.

The problem is that ML estimators are not meant to maximize the goodness

of fit (which is done, for example, by OLS) .

The Maximum Score estimator for binary choices models is instead based on

a fitting rule.

MaxβSNα(β) =
1

N

N∑

i=1
[Zi − (1 − 2α)]sgn(Xiβ) (54)

where:

• α is a preset quintile;

• Zi = 2Yi − 1 so that Z = −1 if Y = 0 and Z = 1 if Y = 1;

If α is set to 0.5, the maximum score estimator chooses β to maximize the

number of times that the prediction has the same sign as Z.

In other words, given a prediction rule based on a given percentile, it maxi-
mizes the number of correct predictions.

Bootstrapping is used to get an indication of the variability of the estimator.

(see Greene).
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2.2 Applications: binary choices models for the identification of

social effects

The reflection problem (Manski, 1993)

Let each member of the population be characterized by:

y : a scalar outcome (e.g. crime);

z : a vector of individual attributes directly affecting y (e.g. family income,
age, education, employment status);

x : a vector of attributes characterizing the reference group (e.g. neighbor-
hood indicator, efficiency of the local public employment office, quality

of schools).

We are interested in answering the following questions:

• Does the propensity to commit crime depend on the average crime rate
in the neighborhood?

• Does the propensity to commit crime depend on the average individual
attributes of the people living in the neighborhood like age, education,

family income, or unemployment rate?

• Does the propensity to commit crime depend on exogenous characteris-

tics of the neighborhood like the efficiency of the local public employment

office or the quality of schools?
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A formal characterization of these questions.

We focus on the linear case in order to understand the nature of the problem.

Consider the following model:

E(y|x, z) = α + βE(y|x) + E(z|x)′γ + x′δ + z′η (55)

• if β 6= 0 the model expresses an endogenous social effect: the individual’s
propensity to behave in some way changes with the average behavior of

a given reference group;

• if γ 6= 0 the model expresses an exogenous social effect: individuals

in the same reference group behave similarly because they have similar

personal exogenous attributes, (e.g. sorting on the basis of z);

• if δ 6= 0 individuals in the same reference group behave similarly because

they face a similar environment (e.g. local attributes);

• if η 6= 0 individual characteristics are relevant for the outcome.

Can we identify the parameters?
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Problems in the identification of β and γ

If β 6= 1 we can integrate both sides of 55 with respect to z in order to solve

for E(y|x):

E(y|x) = α + βE(y|x) + E(z|x)′(γ + η) + x′δ (56)

=
α

1 − β
+ E(z|x)′

γ + η

1 − β
+ x′

δ

1 − β

If we plug this back into 55 we get the reduced form:

E(y|x, z) =
α

1 − β
+ E(z|x)′

γ + ηβ

1 − β
+ x′

δ

1 − β
+ z′η (57)

which shows that the structural parameters cannot be identified.

If we estimate the reduced form 57 we can only say that:

• if the coefficient on E(z|x)′ 6= 0,

• if the regressors [1, E(z|x), x, z] are linearly independent in the popula-

tion,

at least one of the social effects is present, but we cannot determine which

one.
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A tautological case: z is a function of x

Suppose that:

• z is family income and x is an indicator function for “uptown” and

“downtown”;

• family income is a function z = z(x) of the neighborhood: individuals

work where they live and downtown firms are less productive.

It follows that

E(y|x, z) = E(y|x) (58)

And therefore equation 55 becomes:

E(y|x) = α + βE(y|x) + E(z|x)′γ + x′δ + z′η (59)

which makes sense only with β = 1 and α = γ = δ = η = 0.

The model is just a tautology.

In fact, there is no real endogenous social effect. There are only different
types of individuals sorted in different groups.

These groups are taken as the reference groups which should originate the

social effects.
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The pure endogenous social effect model

Empirical studies of endogenous social effects often assume implicitly or ex-

plicitly that γ = δ = 0 which means:

• no exogenous social effect;

• no effect of local attributes.

The reduced form becomes in this case:

E(y|x, z) =
α

1 − β
+ E(z|x)′

ηβ

1 − β
+ z′η (60)

and β is identified as long as [1, E(z|x), z] are linearly independent in the

population.

However this is not really a solution: we are assuming away the problem!

In the applications that follows we see some recent alternative solutions.
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3 Multiple choices

3.1 Theory

3.1.1 Basic framework and notation

• i = {1, 2, 3...N}
denotes a set of decision makers.

• j = {0, 1, 2, 3...H}
denotes a finite set of mutually exclusive and exhaustive possible choices.

• Uij = Xijβj + εij
is the utility of the decision maker i if the choice is j; it is a function of:

– a systematic component Xijβj where

∗ Xij is a row vector of observed characteristics of the decision

maker and of the choices and

∗ βj is a column vector of unknown parameters which may change

across choices;

– a random unobservable component εij.

• Yi is the indicator function that denotes which option has been chosen

by the decision maker:

Yi = j if i chooses j (61)

Decision makers are assumed to maximize utility, and therefore:

Yi = j if Uij > Uis for all s 6= j in the choice set (62)

Since we observe only the systematic component of utility, we cannot predict
with certainty the choice of each decision maker. We can only try to assess

the probability that the decision maker will choose each alternative.
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3.1.2 The logit model.

Pij = Pr(Yi = j) (63)

= Pr(Uij > Uis , ∀ s 6= j)

= Pr(Xijβj + εij > Xisβs + εis , ∀ s 6= j)

= Pr(εis − εij < Xijβj −Xisβs , ∀ s 6= j)

If each εij is distributed independently according to the extreme value cu-

mulative distribution

exp(−e−εij ) (64)

then, using 63, the probability that the alternative j is chosen is given by the
logit distribution (see Train 1986, p53):

Pij =
eXijβj

∑H
s=0 e

Xisβs
(65)

Note that:

• 0 ≤ Pij ≤ 1;

• ∑H
j=0 Pij = 1;

• the logit probabilities exhibit the Independence from Irrelevant Alterna-

tives Property (IIA).
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3.1.3 Independence from Irrelevant Alternatives Property (IIA)

This property implies that the odds of two alternatives j and s do not depend
on the other existing alternatives:

Pij

Pis
=
eXijβj

eXisβs
(66)

which depends only on i and j.

This property may not be desirable. Consider the following classic example:

• Initially there are only two options: j = “car”; s = “red bus”.

• Suppose
Pij

Pis
= 1.

• A new option is added: t = “blue bus”.

• Suppose that decision makers who choose a bus are indifferent with

respect to the color: then we would expect the model to predict: Pij =

0.5 and Pis = Pit = 0.25.

• However, the logit model would continue to imply Pij

Pis
= 1.

• In order for this to be compatible with Pis = Pit, the estimated proba-

bilities must be Pij = Pis = Pit = 1
3 , which is clearly unsatisfactory.

In the context of this example the property is undesirable. In other contexts

it may instead be desirable. Examples ...

The validity of the IIA hypothesis can be tested (see below).
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3.1.4 Which parameters are identified in the logit model?

Consider as an example the (binary for simplicity) problem of consumer i
who has to choose between Japanese (j = 0) or European (j = 1) cars.

The vector of attributes Xij includes:

• factors Zij that change across both individuals and choices (e.g. the
price or the number of dealers of each car in the city where i lives);

• factors Wi that change only across individuals (e.g. sex, age or income

of the consumer);

• a choice specific constants αj capturing factors that change across choices

but not across individuals.

The vector of parameters to be estimated is β′
j = {αj , γ, δ}, which differs

across choices because there is a different constant for each choice. The

parameters γ and δ are instead assumed to be identical across choices.

Under these assumptions the probability of the European choice would be:

Pi1 = Pr(Yi = 1) =
eα1+Zi1γ+Wiδ

eα0+Zi0γ+Wiδ + eα1+Zi1γ+Wiδ
(67)

=
1

1 + e(α0−α1)+(Zi0−Zi1)γ
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This example highlights some identification problems in the logit model:

• if δ is identical across choices, this model cannot identify the effect of
the decision maker’s attributes (Wiδ cancels out);

• the model cannot identify the choice-specific constants but only the dif-
ference between them α0 − α1;

• the model can identify the effects γ of the choice-specific attributes also
if they are identical across choices.

In order to understand the implications of these findings it is better to focus
separately on:

i. models with only individual-specific attributes;

ii. models with only choice specific attributes.

Actual applications may of course jointly consider both types of attributes.
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3.1.5 The multinomial logit model

This is the conventional name for a multiple choice problem in which the
representative utility of each choice depends only on the attributes of the

decision maker:

Uij = Xiβj + εij (68)

Note that, to achieve identification, the attributes are allowed to have dif-

ferent effects on the utility of the different choices. This assumption is also

reasonable from an economic point of view.

In this case, the probability of a choice becomes:

Pij =
eXiβj

∑H
s=0 e

Xiβs
(69)

=
1

∑H
s=0 e

Xi(βs−βj)

which shows that only differences between parameters can be identified.

It is therefore convenient to impose the normalization with respect to a ref-

erence choice, for example j = 0 (but any other would do equally well).
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Taking j = 0 as the reference choice means to impose the normalization

β0 = 0, which implies eXiβ0 = 1 and therefore:

Pij = Pr(Yi = j) (70)

=
eXiβj

1 +
∑H

s=1 e
Xiβs

Pi0 = Pr(Yi = 0) (71)

=
1

1 +
∑H

s=1 e
Xiβs

Note that ifH = 1 we obtain the standard binary choice logit model described

in section 2.1.7.

If the matrix Xi includes a vector of ones, the model estimates also H choice

specific (normalized) constants.
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Estimation of the parameters

The log-likelihood function of the Multinomial logit model is

ln(L) =
N∑

i=1

H∑

j=0
dij ln(Pij) (72)

where dij = 1 if i chooses j.

The first order conditions for the maximization of the likelihood are

∂ln(L)

∂βj
=

N∑

i=1
(dij − Pij)Xi = 0 (73)

Note that this is a system of K ×H equations.

The second derivatives matrix is composed by H2 blocks each with dimension

K ×K.

The “main diagonal” blocks have the form

∂2ln(L)

∂βj∂β′
j

= −
N∑

i=1
Pij(1 − Pij)X

′
iXi (74)

The “off main diagonal” blocks (for j 6= s) have the form

∂2ln(L)

∂βj∂β′
s

=
N∑

i=1
PijPisX

′
iXi (75)
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Interpretation of the parameters

The parameters βj should be interpreted carefully.

Note that:

ln
Pij

Pi0
= Xiβj (76)

The coefficient βj measures the impact of the attributes Xi on the log-odds

that the decision maker chooses j instead of 0.

Note also that:

ln
Pij

Pis
= Xi(βj − βs) (77)

The difference between the coefficients βj and βs measure the impact of the
attributes Xi on the log-odds that the decision maker chooses j instead of s.

Because of the IIA property the odds concerning any couple of choices are

independent from all the other choices.

If only choice specific constants are included, their maximum likelihood esti-
mate is the proportion of individuals that make each choice.
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Interpretation of marginal effects

The marginal effects of the individual attributes Xi on the probability of a

choice Yi = j are even more difficult to interpret.

γj =
∂Pj

∂Xi
= Pj(βj −

H∑

s=0
Psβs) = Pj(βj − β̄) (78)

Hence, the effect of Xi on Pj (the generic probability of a j choice) depends

on the parameters concerning all the choices, not just on the parameters

concerning choice j.

The problem is that when Xi changes all the probabilities of all the choices
are contemporaneously affected.

• Consider the car example with three choices: Japanese (j = 0) , Euro-
pean (j = 1) and American (j = 2).

• Suppose Xi is the age of the buyer and that β2 > β1 > 0.

• This implies that older workers tend to buy more European and more
American cars than Japanese cars. Moreover, older workers tend to buy

more American cars than European cars.

• However, if β2 is much larger than β1 it may happen that the probability

of a European choice decreases, when age Xi increases.

Note also that the marginal effects are a function of the explanatory fac-
tors X (which are in Pj = eXβj∑H

s=0 eXβs
), and therefore have to be computed

at some reference value of X (the mean, the median, a particular i ...)
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Effects on odds ratios

As in the binary case, results can be expressed in the form of odds ratios, or

exponentiated form.

The odds of a choice j instead of 0, given Xi, are:

Ω(Yi = j;Yi = 0|X) =
Pij

Pi0
= eXiβj (79)

Given two realizations of Xi, say X1 and X0, we can define the odds ratio

Ω(Yi = j;Yi = 0|X1)

Ω(Yi = j;Yi = 0|X0)
= e(X1−X0)βj (80)

This statistics tells us how the odds of observing Y = j instead of Y = 0

change when Xi changes from X0 to X1.

Stata offers the possibility to display the estimated coefficients in the odds

ratio format:
eβj (81)

which tells us how the odds change when the individual attributes change by

one unit.

• If eβj > 1, Xi increases the odds of observing Y = j as opposed to Y = 0.

• If eβj < 1, the variable j decreases the odds of observing Y = j as

opposed to Y = 0.
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3.1.6 The (pure) Conditional Logit model

This is the conventional name for a multiple choice problem in which the
representative utility of each choice depends on choice specific attributes:

Uij = Xijβ + εij (82)

The probability of a choice would be:

Pij =
eXijβ

∑H
s=0 e

Xijβ
(83)

and in this case the coefficients β are identified even if they are identical

across choices. Marginal effects can be characterized and interpreted more

easily.

Note that the name Conditional Logit model is also used for the general
situation in which both individual-specific and choice- specific attributes are

considered.
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Marginal effects

Consider the car example and suppose that Xij is the number of dealers in

the city of each buyer, for each type of car

The marginal effect of an increase in the number of dealers of car j on the
probability that car j is bought is:

γjj =
∂Pj

∂Xij
= Pj(1 − Pj)βdealer (84)

The marginal effect of an increase in the number of dealers of car s on the
probability that car j is bought is:

γjs =
∂Pj

∂Xis
= −PjPsβdealer (85)

The usual odds ratios (exponentiated) representation of coefficients is also
possible
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Estimation of the parameters

The log-likelihood function of the (pure) Conditional logit model is

ln(L) =
N∑

i=1

H∑

j=0
dij ln(Pij) (86)

where dij = 1 if i chooses j.

The first order conditions for the maximization of the likelihood are

∂ln(L)

∂β
=

N∑

i=1

H∑

j=0
dij(Xij − X̄i) = 0 (87)

where X̄i =
∑H

j=0 PijXij Note that this is a system of K conditions.

The second derivatives matrix is:

∂2ln(L)

∂β∂β′ =
N∑

i=1

H∑

j=0
Pij(Xij − X̄i)(Xij − X̄i)

′ (88)
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3.1.7 A test for the IIA hypothesis

Hausman and McFadden (1984) suggest that if a subset of the choice set is
really irrelevant, omitting it from the model should not change the parameter

estimates systematically.

Consider a choice set A = {B,C} where B and C are subsets of A. We want

to test whether the presence of the choices in C are irrelevant for the odds
between the choices in B.

The statistic for the “Hausman’s specification test”:

HM = (β̂B − β̂A)′[V̂B − V̂A]−1(β̂B − β̂A) (89)

where

• β̂B and β̂A are the ML estimates of the parameters of the restricted and
unrestricted models;

• V̂B are V̂A are the ML estimates of the asymptotic covariance matrices
of the restricted and unrestricted models.

• Both estimates are consistent under the null and β̂A is more efficient.

The statistic HM is distributed as a chi-squared with degrees of freedom

equal to the number of parameters.
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An example

Consider the car example: we would like to know whether the odds of the

choice “European versus Japanese” are really independent from the the pres-

ence of the “American” choice.

The explanatory factors are the number of dealers for each type of car and

each consumer (dealer), the age of the consumer (age) and the choice specific

constants.

The procedure for the test is as follows.

i. Estimate the un-restricted model with all the three choices and all the

observations.

ii. Estimate the restricted model with only two choices (European and

Japanese), dropping the observations for consumers who choose Ameri-
can cars. Also the constant for the American choice has to be dropped,

because it cannot be estimated in the restricted model

iii. Construct the test statistics using only the parameters estimated for

both model

iv. Therefore, note that the test cannot involve a comparison of the esti-

mates of the American-specific constant; moreover, the rows and columns

corresponding to this parameter in the asymptotic covariance matrix of
the un-restricted model should be dropped.

v. If the test statistic is “greater” than the preferred critical value it means
that there is a statistically significant difference between the estimates

of the restricted and the unrestricted model.

vi. Hence, the evidence would not support the IIA property.
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Problems of this test

Three types of problems arise with this test.

i. HM is not bounded to be positive in finite sample because the difference

between the two covariance matrices may not be positive semi-definite.

• Hausman and McFadden (1984) suggest that this supports the null.

ii. Only a subset of the parameters is identified in the restricted model.

iii. It is not obvious how to select the choices to be included in the restricted

subset B and the choices to be tested for irrelevance and included in C.

Alternative tests are available (see the survey in Brooks, Fry and Harris,
1998). They are of two kinds:

• Other (non-Hausman type) tests based on partitions of the choice set:

– for example, McFadden, Train and Tye (1981) propose a likelihood

ratio test based on the comparison between the un-restricted and
the restricted model:

MTT = −2[logL(β̂A) − logL(β̂B)] (90)

– note that these tests solve the problem 1 above, but do not solve
the other two problems.

• Tests designed against specific alternatives, such as Nested Logit Models,
which solve the other two problems and offer more power at the cost of

a loss of generality (See Hausman and McFadden, 1984).
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3.2 Applications of multiple choices models
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4 Panel data

4.1 Examples

The standard situation: a sample of individuals observed for several time
periods.

• i = {1, 2, 3...N}
individuals (workers, firms ...)

• t = {1, 2, 3...T}
time periods for which we have observations on the individuals.

Other apparently different but in fact formally similar situations:

• Siblings (or twins) in families:

– i = {1, 2, 3...N}: siblings

– j = {1, 2, 3...J}: families

• Workers in different geographic areas and different language groups:

– i = {1, 2, 3...N}: individuals

– j = {1, 2, 3...J}: geographic areas

– k = {1, 2, 3...K}: language groups

• Workers in branches of the same firm and in different years:

– i = {1, 2, 3...N}: individuals

– j = {1, 2, 3...J}: branches

– t = {1, 2, 3...T}: time periods
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4.2 Problems arising in cross sections and solved by panel data

4.2.1 Example 1: Production functions and managerial ability

We would like to estimate the following linear approximation to a production
function (see Mundlack, 1961)

yit = β1 + β2lit + β3mi + εit (91)

where

• i is a firm;

• t is time;

• y = log(Y ) is the log of output;

• l = log(L) is the log of labor;

• m = log(M) is the log of managerial ability: unobservable;

• εit is an i.i.d. error term such that E{εit} = 0.

Suppose we have information only on a cross section of firms for a given t, so

that we can only estimate

yi = β1 + β2li + ηi (92)

where ηi = β3mi + εi.

Given 92 we have that:

E(yi|l) = β1 + β2li + E(ηi|l) (93)

E(yi|l) = β1 + β2li + β3E(mi|l)
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Suppose that:

E(mi|l) = λ1 + λ2li (94)

then, substituting 94 in 93 gives:

E(yi|l) = (β1 + β3λ1) + (β2 + β3λ2)li (95)

If we estimate using OLS the regression of y on l we obtain:

Ŷi = b1 + b2li (96)

but, given 95 and the OLS properties, b2 is a biased estimate of the causal
effect of l on y because:

E(b2) = β2 + β3λ2 (97)

Note that that true causal effect of l on y is β2. Assuming that β3 > 0 (which

is reasonable) OLS:

• over-estimates labor productivity β2 if managerial quality is positively

correlated with the quantity of labour λ2 > 0;

• under-estimates labor productivity β2 if managerial quality is negatively

correlated with the quantity of labour λ2 < 0;

Panel data can solve this problem as long as managerial quality can be as-

sumed not to change over time.
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4.2.2 Example 2: Returns to schooling, ability and twins

We would like to estimate the returns to schooling in the following model
(see Ashenfelter and Krueger, 1994):

yij = α+ βSij + γXj + µAj + εij (98)

where

• i is a twin and suppose for simplicity that i = 1, 2;

• j is a family;

• yij: log of the wage rate;

• Xj: family income;

• Aj: genetic and cultural ability of family members (nature and nurture);

• Sij years of schooling of each twin;

• εij is an i.i.d. error term such that E{εij} = 0.

Suppose we have information only on one twin per family for whom we ob-

serve only earnings and years of schooling. Then the model becomes

y1j = α + βS1j + η1j (99)

where η1j = γXj + µAj + εij
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Following the same steps as in example 1, the OLS estimates of the return

to schooling β in a regression of y on S is biased:

E(b) = β + γλ2 + µδ2 (100)

where we are assuming that

E(Xj|S) = λ1 + λ2Sj (101)

E(Aj|S) = δ1 + δ2Sj

and the bias is positive since γ, λ2, µ and δ2 are likely to be positive.

We can improve the situation by extending the available information on the

observed twin. For example, if we obtain information on family income Xj

than the model would be

y1j = α + βS1j + γXj + u1j (102)

where u1j = µAj + εij , and the bias would decrease to

E(b) = β + µδ2 (103)

But there are variables like ability that are not fully observable. In this case,

to solve the problem we need a panel data structure.

As long as we can assume that genetic and cultural ability (nature and nur-

ture) is constant across twins of the same family, data on more than one

twin per family would allow us to eliminate the bias µδ2 due to unobservable

ability, because this variable changes only across families but is fixed within
families.
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4.3 A general framework and more notation

Consider the following model:

Yit = αi +Xitβ + εit (104)

where:

• Yit is an outcome for individual i at time t.

• αi is a time invariant individual effect. Note that it measure the effect

of all the factors that are specific to individual i but constant over time.

• Xit is a row vector of observations on K explanatory factors for individ-

ual i at time t, not including the constant term.

• β is a column vector of K parameters.

• εit is an i.i.d. error term such that E{εit} = 0.

Note that we could write the model as

Yit = (α + νi) +Xitβ + εit (105)

allowing for a general constant term. But clearly the parameters α and νi

would not be uniquely identified. A normalization is needed and the standard
one is to assume α = 0 and νi = αi.

But other normalizations would do like for example

• ν1 = 0 which would allow us to identify the general constant and N − 1

individual-specific fixed effects.

• ∑
νi = 0 which is the normalization assumed by STATA in the command

XTREG, FE (so a general constant term a is estimated) for reasons to

be explained below.
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In matrix form the model can be written as:



Y1

Y2

.

.

.
YN




=




i 0 . . . 0
0 i . . . 0

. . . . . .

. . . . . .

. . . . . .
0 0 . . . i







α1

α2

.

.

.
αN




+




X1

X2

.

.

.
XN




β +




ε1
ε2
.

.

.
εN




(106)

where:

• Yi and Xi are the T time observations on the outcome and on the K

explanatory factors for individual i.

• β is a column vector of K parameters.

• αi is the time invariant individual fixed effect.

• εi is the the vector of T disturbances for individual i.

• i is a T dimensional column vector with all elements equal to 1.

We are primarily interested in obtaining estimates of the parameters β which

represent the causal effect of X on Y .

It is useful to draw a distinction between the model described above and the

estimators we analyze below.
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4.4 Fixed effects (within) estimators

4.4.1 Least squares dummy variable model (LSDV)

A first way to proceed is to estimate with OLS a model in which we include
a dummy variable for each individual in the sample. The estimated model

for individual i at time t would be:

Yit = d1α1 + d2α2 + ... dNαN +Xitβ + εit (107)

where

• dj(i) = 1 if j = i;

• dj(i) = 0 if j 6= i.

In compact matrix format, we can write the model as:

Y = Dα+ Xβ + ε (108)

where:

• Y is the NT column vector of the observations on the outcome;

• D is the NT ×N matrix of the observations on the dummies;

• α is the N column vector of the individual-specific fixed effects;

• X is the NT ×K matrix of the observations on the explanatory factors;

• β is the K column vector of the parameters of primary interest;

• ε is the NT column vector of disturbances.

Note that this is a correctly specified regression with N +K regressors. OLS

applied to 108 would give unbiased estimates of the parameters of interest:

i.e. if bLSDV indicates the OLS estimate of β in 108 we have that:

E(bLSDV ) = β (109)
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Disadvantages of this procedure

• It may be computationally unfeasible if the number of time invariant
fixed effects to be estimated is too large.

Advantages of this procedure

• If the computer is powerful enough, it is a very simple way to estimate

the parameter of interest.

Examples

Bertrand, Luttmer and Mullianathan (1998) estimate a regression with the

following form (eq. 3 in their paper):

Wijk = (CAjk ∗ W̄k)α +Xiβ + γk + δj + CAjkθ + εijk (110)

in which they include 42 language group fixed effects γk and 1196 local area

fixed effects δj ; the parameter of interest is α which is identified controlling

for these fixed effects.

To see the link with the standard panel setup described above, you can con-

sider their dataset as a panel of “area - language” cells observed over different

individuals.
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4.4.2 Analysis of Covariance: using deviations from individual specific means

If N is too large the LSDV estimator is not feasible and we need a trick to
construct a feasible estimator for the parameters β.

The trick is offered by the results concerning “partioned regressions”, “pro-

jection matrices” and “partialling out matrices”.

The intuition is the following. Given a regression like 108:

Y = Dα+ Xβ + ε

unbiased estimates of β can be obtained with this procedure.

• Regress Y on D and retrieve the estimated residuals Y ∗.

• Regress X on D and retrieve the estimated residuals X∗.

• Regress Y ∗ on X∗ to obtain an estimate of β; This estimate is numerically
equivalent to the LSDV estimate of 108.

In our panel setup in which D is a matrix of individual specific dummies:

• the elements of Y ∗ are the deviations of each element of Y with respect

to the correspondent individual specific mean;

• the elements of X∗ are the deviations of each element of X with respect
to the correspondent individual specific mean.

So to obtain an estimate of β when the LSDV model is unfeasible, we can
compute the deviations of Y and X with respect to their individual specific

means and then regress the deviation of Y on the deviations of X.
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4.4.3 A parenthesis on partitioned regressions

To understand the “mechanics” of this procedure, consider again equation
108:

Y = Dα+ Xβ + ε

The matrix
H = D(D′D)−1D′ (111)

is called “projection matrix” because if you premultiply any vector Z by H ,

from a graphical point of view the result is the projection of the vector Z
on D. Numerically it gives the least square prediction of Z given D (see

graphical interpretation of OLS).

If we premultiply Y by H we obtain the least square prediction:

Ŷ = HY = D(D′D)−1D′Y = DbY D (112)

where bY D is the OLS estimate of the coefficients of the regression of Y on

D.

If we premultiply X by H we obtain the least square prediction:

X̂ = HX = D(D′D)−1D′X = DbXD (113)

where bXD is the OLS estimate of the coefficients of the regression of X on
D.

Note that H is an idempotent matrix.

55



The matrix

M = I − D(D′D)−1D′ (114)

is called “partialling out matrix”; if you premultiply any vector Z by M you

obtain the least square estimated residuals of the regression of Z on D (see
graphical analysis).

If we premultiply Y by M we obtain the residuals:

Y ∗ = MY = Y − D(D′D)−1D′Y = Y − DbY D (115)

estimated from the regression of Y on D.

If we premultiply X by M we obtain the residuals:

X∗ = MX = X −D(D′D)−1D′X = X−DbXD (116)

estimated from the regression of X on D .

If we premultiply ε by M we obtain the residuals:

ε∗ = Mε = ε− D(D′D)−1D′ε = ε− DbεD (117)

estimated from the regression of ε on D . Note that E(ε∗) = 0 if E(ε) = 0.

If we premultiply D by M we obtain:

MD = D− D(D′D)−1D′D = 0 (118)

Note that also M is an idempotent matrix.
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If we premultiply by M the entire equation 108 we obtain

MY = MDα+ MXβ + Mε (119)

Y ∗ = X∗β + ε∗ (120)

which explains why M is called “partialling out” matrix.

Equation 120 is a well behaved equation that can be estimated with OLS to

obtain an unbiased and consistent estimate of β without having to directly

estimate α.

Note that equation 120 is a regression of the component of Y which is or-
thogonal to D on the component of X which is orthogonal to D.

This is in fact what partial regression coefficients capture.
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4.4.4 Back to the Analysis of Covariance

D is an NT ×N matrix of dummies with the following form

D =




i 0 . . . 0
0 i . . . 0

. . . . . .

. . . . . .

. . . . . .
0 0 . . . i




(121)

where i is an T column vector with elements equal to 1.

Given this particular form, partialling out D implies taking away from each

variable its individual specific mean.

To see this note that the partialling out matrix takes the followint form:

M = I −D(D′D)−1D′ (122)

=




M̄ 0 . . . 0

0 M̄ . . . 0
. . . . . .

. . . . . .

. . . . . .
0 0 . . . M̄




(123)

where M̄ is a T × T matrix equal to:

M̄ = IT − 1

T
ii′ (124)
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If we premultiply any T vector Z by M̄ we obtain the vector

M̄Z = Z − Z̄i (125)

where Z̄ is the mean of the T elements of Z

Therefore, our partitioned regression is:

MY = MDα+ MXβ + Mε

Y ∗ = X∗β + ε∗

is equivalent to the following regression

[Yit − Ȳi.] = [Xit − X̄i.]β + [εit − ε̄i.] (126)

where

• Ȳi. is the mean of the T observations on the outcome for individual i;

• X̄i. is the K row vector of the means of the T observations on the ex-
planatory factors X for individual i;

Exercise: verify the above procedure for the case i = {1, 2} and t = {1, 2}.

OLS estimation of 126 gives the fixed effect estimator bFE of β, which can be

written in matrix form as:

bFE = [X′MX]−1[X′MY ] (127)

which is unbiased and consisitent:

E(bFE) = β (128)

Note that bFE is numerically equal to bLSDV and is also called within estima-
tor, to be distinguished from the between estimator which will be discussed

below. Another name for this way to proceed is “Analysis of Covariance”.
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Estimates ai of the individual fixed effects can be obtained as estimates of

the mean residual for each individual:

ai = Ȳi. − X̄i.bFE (129)

The estimator of the covariance matrix for bFE is:

̂COV (bFE) = s2[X′MX]−1 (130)

where

s2 =

∑N
i=1

∑T
t=1(Yit − ai −XitbFE)2

NT −N −K
(131)

where
eit = (Yit − ai −XitbFE) (132)

is the estimated ith residual.

The estimator of the covariance matrix for ai is:

̂V AR(ai) =
s2

T
+ X̄i

̂COV [bFE]X̄ ′
i (133)

Note that the STATA command XTREG, FE computes the fixed effect

(within) estimate bFE of β. However the individual fixed effects are esti-

mated as deviations from a common mean, as in the model

Yit = α + νi +Xitβ + εit (134)

with the constraint
∑
νi = 0.

One of the advantages of this choice is that it simplifies the computation of
predicted values of the outcome.
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4.4.5 First differences

Consider the standard model and assume that we have only two observarva-
tions for each i

Yi1 = αi +Xi1β + εi1 (135)

Yi2 = αi +Xi2β + εi2 (136)

and assume that we have only two time observations.

If we subtract 136 from 135 we obtain the equation in first difference:

Yi1 − Yi2 = [Xi1 −Xi2]β + εi1 − εi2 (137)

which, given our assumptions, can be estimated with OLS. The estimate of

β is numerically equal to the fixed effect (within) estimator bFE.

Example 1: Ashenfelter and Krueger (1994)

yij = α+ βSij + γXj + µAj + εij (138)

yi1 − yi2 = β[Si1 − Si2] + εi1 − εi2 (139)

Example 2: Ichino and Maggi (1999)

Sit = αi + δtXi + βS̄it +
∑

j

ζjDijt + γZit + εit, (140)

Sit−Sit−1 = δXi+β(S̄it−S̄it−1)+
∑

j

(Dijt−Dijt−1)ζj+γ(Zit−Zit−1)+εit−εit−1.

(141)

Note in this example:

• time invariant observable characteristics have time varying coefficients
and therefore do not cancel out in the first difference equation.

• the first differences of the branch fixed effects are variables that take

values {−1, 0, 1}.
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4.4.6 Differences-in-Differences (DD) strategies

The DD strategies offer simple ways to estimate causal effects in panel data
when certain groups of observations are exposed to the causing variable and

other not.

This approach is particularly well suited to estimating the effect of sharp

changes in the economic environment or changes in government policy.

A good example is Card (1990) which examines the effect of immigration
on the employment of natives using the “natural experiement” generated by

the sudden large-scale migration from Cuba to Miami known as the “Mariel

Boatlift”.

Card asks whether the Mariel immigration (an increase of 7% of the Miami
labor force between May and September 1980) reduced the employment or

the wages of non-immigrants labor groups.

The identification strategy is based on the comparison between what hap-

pened in Miami and what happened in other comparable US cities, assumed
to be representative of what would have happened in Miami absent the Mariel

immigration (see Figure 1 in WP version of Card, 1990).

Another example is Card and Sullivan (1988) who use a DD estimator to

evaluate the effect of a training program on the probability of employment
after training.
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Consider the following framework:

• i denotes workers in a city;

• In the absence of immigration:

– Yi = Y0i = 1 if worker i is unemployed;

– Yi = Y0i = 0 if worker i is employed.

• In the presence of immigration:

– Yi = Y1i = 1 if worker i is unemployed;

– Yi = Y1i = 0 if worker i is employed.

Note that only one of these outcomes is actually observed for each individual,
but to understand this approach is useful to think in terms of “counterfactu-

als” and to consider that all outcomes exist although only one is observed.

The unemployment rate in city c at time t is:

• E(Y0i|c, t) in the absence of immigration;

• E(Y1i|c, t) in the presence of immigration.

The DD approach assumes that:

E(Y0i|c, t) = βt + γc (142)

E(Y1i|c, t) = βt + γc + δ = E(Y0i|c, t) + δ (143)

Hence, unemployment in a city is determined only by:

• a time fixed effect βt equal for all cities;

• a city fixed effect γc equal for all time periods;

• the causal effect of immigration which appears only if the city is exposed
to an immigration wave.
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Suppose that we have two cities:

• c = M which has been exposed to migration (Miami);

• c = L which has not been exposed to migration (Los Angeles);

and two time periods

• t = 79: before the migration wave;

• t = 81: after the migration wave.

The sample statistics that we can use are the ones which correspond to the

following population parameters:

• E(Yi|c = M, t = 79) = E(Y0i|c, t) = β79 + γM

• E(Yi|c = M, t = 81) = E(Y1i|c, t) = β81 + γM + δ

• E(Yi|c = L, t = 79) = E(Y0i|c, t) = β79 + γL

• E(Yi|c = L, t = 81) = E(Y0i|c, t) = β81 + γL

The crucial role of the assumptions 142 and 143 is to ensure that unemploy-

ment growth would have been the same in both cities

• if both of them were not not exposed to migration:

E(Y0i|c = M, t = 81) − E(Y0i|c = M, t = 79) = β81 − β79

E(Y0i|c = L, t = 81) − E(Y0i|c = L, t = 79) = β81 − β79

• if both of them were exposed to migration:

E(Y1i|c = M, t = 81) − E(Y0i|c = M, t = 79) = β81 − β79 + δ

E(Y1i|c = L, t = 81) − E(Y0i|c = L, t = 79) = β81 − β79 + δ
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In other words, controlling for city fixed effects, if the cities have the same

migration history, they also have the same changes in unemployment rates.

This is the crucial identifying assumption and is non-testable because the

migration history is not the same in the two cities.

If this assumption holds, the difference between the unemployment changes
in the two cities (the difference-in-difference) measures the causal effect of

migration on unemployment:

[E(Y1i|c = M, t = 81) − E(Y0i|c = M, t = 79)] − (144)

[E(Y0i|c = L, t = 81) − E(Y0i|c = L, t = 79)] =

[β81 − β79 + δ] − [β81 − β79] =

δ

Note that by taking the difference-in-differences we control for city fixed
effects and time fixed effects.
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If data on individuals are available, using a more standard regression frame-

work, the difference-in-difference estimator can be obtained from an estimate

of the following equation based on the pooled observations for all workers, in

all cities and all years:

Yict = βt + γc + δDict + εict (145)

where:

• Dict = 1 if c = M and t = 81 (0 otherwise)

• E(εict|c, t) = 0 and the these disturbances are i.i.d.

• c = {M,L}

• t = {79, 81}

It is easy to check that this model generates the same conditional expectations

described above.

This regression framework shows that the DD estimator can also be computed

controlling for individual characteristics, by including a vector Xict of these

characteristics in the regression 145:

Yict = Xictα + βt + γc + δDict + εict (146)

The DD approach rests on the assumption that time differences in the out-

comes are identical across cities if the treatment histories are the same.

This assumption can be more easily considered plausible when we control for

X as in equation 146.

However, this assumption cannot be tested and evidence on the trends in

outcomes before and after the event of interest may help making it more
plausible.
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4.4.7 Fixed effects estimators and measurement error

Consider the twins’ model:

yij = αj + βSij + εij (147)

where i = {1, 2} denotes a twin, j denotes a family, αj includes all the family

specific effects which are fixed across twins in the same family and Sij is
schooling. For simplicity we omit other covariates.

Suppose that Sij is the true number of years of schooling, but because of

measurement error we observe

S̃ij = Sij + µij (148)

where µij is a classical error of measurement, assumed to be i.i.d. and uncor-

related with all the true Sij .

COV (S, µ) = 0 (149)

The estimated equation is:

yij = αj + βS̃ij − βµij + εij (150)
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Classical measurement error in a non-panel framework

As a reference benchmark to understand what happens in the case of panel

data, let’s look at what happens in the classical case with no individual

specific fixed effects: i.e. αj = α for all j.

So the estimated model is

Yij = α + βS̃ij + ηij (151)

where ηij = −βµij + εij

The error term in 151 is clearly correlated with the regressor S̃ij . So the OLS

estimate of β is biased in the following way:

E(bOLS) =
Cov(Y, S̃)

V ar(S̃)
(152)

= β +
Cov(η, S̃)

V ar(S̃)

= β − β
Cov(µ, S̃)

V ar(S̃)

= β − β
V ar(µ)

V ar(S) + V ar(µ)

= β


1 − V ar(µ)

V ar(S) + V ar(µ)


 = β


1 − V ar(µ)

V ar(S̃)




Because of measurement error, OLS underestimates the true parameter.

The attenuation bias is larger the larger the ”(un)-reliability ratio”, i.e. the

ratio between the variance of the noise and the variance of the signal. Note

that 0 < V ar(µ)
V ar(S̃)

< 1.
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Measurement error in panel data

Going back to a panel data framework, the presence of unobservable individ-

ual specific fixed effects (i.e αj 6= α) combined with measurement error of the

observed regressors X causes OLS to be biased for two reasons:

• the omitted variable bias due to the fact that OLS does not control for

the individual specific fixed effects (see section 4.2).

• the attenuation bias caused by measurement error (see equation 152);

If we use a fixed effect (within) estimator,

• we eliminate the bias due to the omission of the fixed effects;

• but the measurement error bias can be larger or smaller and under plau-
sible assumptions will be larger.

To see this, consider for example the true model in first differences:

y1j − y2j = β[S1j − S2j] + ε1j − ε2j (153)

However, the model that we can actually estimate is:

Y1j − Y2j = β[S̃1j − S̃2j ] − β[µ1j − µ2j ] + ε1j − ε2j (154)

Y1j − Y2j = β[S̃1j − S̃2j ] + φj

where φj = −β[µ1j − µ2j] + ε1j − ε2j

Note that in equation 154 we have one observation per family and the error

term φ is correlated with the regressor.
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The OLS estimate of 154 gives the fixed effect (within) estimator but is

biased by the existence of measurement error. Note that the bias can be

easily computed using the formula 152 for the standard (non-panel) case:

E(bFE) = β


1 − V ar(µ1j − µ2j)

V ar(S1j − S2j) + V ar(µ1j − µ2j)


 = β


1 − V ar(µ1j − µ2j)

V ar(S̃1j − S̃2j)




(155)

In order to simplify and interpret this expression we have to make some
assumptions on the correlation structure of these variables.

• The measurement error of each twin is uncorrelated with his/her own

true schooling:

Cov(µij , Sij) = 0 (156)

so that
V ar(S̃ij) = V ar(Sij) + V ar(µij) (157)

• The measurement errors have the same variance:

V ar(µ1j) = V ar(µ2j) = V ar(µ) (158)

• The measurement errors of the two twins can be correlated, so that:

V ar(µ1j − µ2j) = 2V ar(µ) − 2Cov(µ1, µ2) (159)

• The true schooling levels have the same variance:

V ar(S1j) = V ar(S2j) = V ar(S) (160)

• The measured schooling levels of the two twins may be correlated be-

cause true schooling levels are correlated and because measurement er-

rors are correlated; hence:

V ar(S̃1j − S̃2j) = V ar(S̃1j) + V ar(S̃2j) − 2Cov(S̃1, S̃2) (161)

= 2V ar(S) + 2V ar(µ) − 2Cov(S̃1, S̃2)
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Using these assumptions, we can rewrite equation 155 as:

E(bFE) = β


1 −

V ar(µ)[1 − Corr(µ1, µ2)]

[V ar(S) + V ar(µ)][1 − Corr(S̃1, S̃2)]


 (162)

where:

Corr(µ1, µ2) =
Cov(µ1, µ2)

V ar(µ)
=

Cov(µ1, µ2)

V ar(µ1)1/2V ar(µ2)1/2 (163)

Corr(S̃1, S̃2) =
Cov(S̃1, S̃2)

V ar(S̃)
=

Cov(S̃1, S̃2)

V ar(S̃1)1/2V ar(S̃2)1/2
(164)

This result shows that in panel data the bias due to measurement error can

be larger or smaller than in the standard non-panel case (see Griliches and
Hausman, 1986).

• If Corr(µ1, µ2) < Corr(S̃1, S̃2) the bias is larger. In particular, in the
classical case in which measurement errors are uncorrelated (Corr(µ1, µ2) =

0), an error that would cause a small bias in the cross-sectional case may

have very big effects in the panel case.

– The intuition is that, in relative terms, the variance of the signal

is reduced by first differencing S̃, while the variance of the noise is
unchanged because the errors are independent.

• If Corr(µ1, µ2) > Corr(S̃1, S̃2) instead the bias may be smaller in panel
data.

– Less likely to happen; shows usefulness of validation studies.

Ashenfelter and Krueger provide a clever (but not general ...) solution to

the probelm of measurement error in panel data. Note that they assume
Corr(µ1, µ2) = 0. (See slides from paper.)
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4.4.8 Fixed effects estimators and lagged dependent variables

Fixed effect (within) estimation becomes problematic when the model in-
cludes lagged dependent variables as in

Yit = αi + Yit−1ρ +Xitβ + εit (165)

where E(εit) = 0.

Note that a similar specification can be obtained also from the following

different initial assumptions:

Yit = ai + X̃itβ + uit (166)

uit = ρuit−1 + εit (167)

because substitution of 167 in 166 gives:

Yit = ai(1 − ρ) + ρYit−1 + (X̃it − ρX̃it−1)β + εit (168)

Yit = αi + Yit−1ρ +Xitβ + εit (169)

which is equal to 165 if αi = ai(1 − ρ) and Xit = (X̃it − ρX̃it−1) .

The problem in the estimation of 165 is that Yit−1 is a predetermined variable

but not a strictly exogenous variable.

With weakly exogenous (predetermined) regressors, the standard techniques

to deal with the unobservable heterogeneity represented by the αi fail.

Both the LSDV estimator and the Analyis of Covariance estimator of ρ and

β will be biased and inconsistent.
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LSDV and lagged dependent variables

To understand the reason of the bias let’s define the N +K + 1 row vector:

Zit = [Dit Yit−1 Xit] (170)

of the observed fixed effect dummies, lagged dependent variable and explana-

tory factors for individual i at time t and the N +K + 1 column vector

γ =




α

ρ
β


 (171)

where α is the column vector of the N individual specific fixed effects αi.

Using this notation the model can be written as

Yit = Zitγ + εit. (172)

Denoting with Z the matrix of the observations on Zit, the LSDV estimator

is biased because:

E(Y |Z) = Zγ + E(ε|Z) 6= Zγ (173)

Note that not only the estimate of ρ but also the estimates of β and α are

biased by the failure of the orthogonality condition

E(ε|Z) = 0 (174)

73



The orthogonality condition E(ε|Z) = 0 fails because, while E(ε|D) = E(ε|X) =

0, we have instead that

E(ε|Y ) 6= 0 (175)

It is important to understand that 175 requires every element of ε to be
uncorrelated with every element of Y , i.e.:

E(εit|Yis) = 0 for all s and all t (176)

We can only say that

E(εit|Yis) = 0 for s < t (177)

but
E(εit|Yis) 6= 0 for s ≥ t (178)
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Analysis of Covariance and lagged dependent variables

The Analysis of Covariance approach does not solve the problem because

when we partial out the fixed effects and we consider the model in deviation

from the individual specific means we obtain:

[Yit − Ȳi.] = [Yit−1 − Ȳi.−1]ρ + [Xit − X̄i.]β + [εit − ε̄i.] (179)

and the orthogonality condition required for an unbiased estimate of β and
ρ does not hold:

E([Yis−1 − Ȳi.−1][εit − ε̄i.]) 6= 0 for all s and all t (180)

Note that in this case the orthogonality condition fails because

E(Ȳi.−1 εit) 6= 0 (181)

E(Yis−1 ε̄i.) 6= 0 (182)

Nickell (1981) gives analytical expressions for the bias due to lagged depen-

dent variables and shows that:

• the bias goes to zero when T goes to infinity, but

• the bias does not go to zero when N goes to infinity;

Since the typical panel data has a large N but a small T this result is dis-

turbing.

We give an example of the inconsistency of fixed effect estimators in a simple

case with T = 3.
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An example for T = 3

We have 3 time observations for each individual and we include one lag of the

dependent variable as explanatory factor. We cannot use, for the estimation,

the first observation on each individual, and we can only focus on:

Yi2 = αi + Yi1ρ+ εi2 (183)

Yi3 = αi + Yi2ρ+ εi3 (184)

where E(εit) = 0 and for simplicity we have omitted all the other exogenous

explanatory factors X .

We know that to obtain the FE (within) estimator we can equivalently use
the LSDV model, the analysis of covariance, or first differencing. The third

approach is numerically equivalent to the others because we have effectively

only two time observations. It is easier to compute the bias using this third
approach:

Yi3 − Yi2 = (Yi2 − Yi1)ρ+ εi3 − εi2 (185)

The probability limit for N → ∞ of the OLS estimator of ρ using 185 is:

P lim
N→∞

ρ̂FE =
1
N

∑N
i=1(Yi3 − Yi2)(Yi2 − Yi1)

1
N

∑N
i=1(Yi2 − Yi1)2 (186)

=
E[(Yi3 − Yi2)(Yi2 − Yi1)]

E[(Yi2 − Yi1)2]

Substituting the expectation of 185 in 186 we obtain:

P lim
N→∞

ρ̂FE = ρ +
E[(εi3 − εi2)(Yi2 − Yi1)]

E[(Yi2 − Yi1)2]
(187)

= ρ − E(ε2i2)

E[(Yi2 − Yi1)2]

And the bias does not go away even if the number of individuals goes to

infinity.
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A solution based on first differencing and instrumental variables

Going back to the general model

Yit = αi + Yit−1ρ +Xitβ + εit (188)

we have seen that the LSDV approach, the Analysis of Covariance do not

allow to control for the αi and to fix at the same time the failure of the

orthogonality conditions.

However, suppose that T > 2, and consider the model in first differences

Yit − Yit−1 = (Yit−1 − Yit−2)ρ + (Xit −Xi−1)β + εit − εit−1 (189)

with this transformation:

• we have eliminated the αi;

• variables like Yit−2, (Yit−2 − Yit−3), Xit−1 and (Xit−1 − Xit−2) appear to

be valid instruments.
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More generally, if only one lag of the dependent variable is included in the

model, the following orthogonality conditions hold:

E[yis(εit − εit−1)] = 0 for all s < t− 1 (190)

while if the X are truly exogenous

E[xis(εit − εit−1)] = 0 for all s and all t (191)

If more lags of the dependent variable are included in the model, we have of

course to go further back with lags in order to find valid instruments.

Hence,

• if we have observations on a sufficient number of lags,

• using as instruments the appropriate lags of the dependent and indepen-

dent variables (either in levels or in differences) ,

we can estimate the model in first differences (equation 189) obtaining con-

sistent estimates of β and ρ.

For alternative solution based on a similar intuition see also Holz-Eakin,

Newey and Rosen (1988), Arellano and Bover (1990) and Keane and Runkle
(1992).

Arellano and Bond (1991) provide three specification tests for the validity of

the instruments in the procedure described above. Note, for example, that

the lagged variables could not be valid as instruments if the error term εit is
autocorrelated.
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4.4.9 Other pitfalls of fixed effects estimation

• Waste of “between” information.
Fixed effect (within) estimators ignore the information offered by the

comparison between individuals

– It is conceivable that, under appropriate assumptions, an estimator

capable to exploit also the “between individuals” variation would be

more efficient.

• Loss of degrees of freedom.

Due to the estimation of the fixed effects and particularly relevant when

the N dimension is large.

– Further (and related to above) loss of efficiency.

• Effect of time invariant explanatory factors.

The transformations which deliver the fixed effect estimator, eliminate
all the time invariant explanatory factors. Therefores the effect of these

factors on the outcome cannot be estimated.

– We can estimate the change of the effect of time invariant variables

but only if we are willing to assume that this effect is time varying

(see Maggi and Ichino, 1999)

• Out of sample predictions.

The individual effects are not assumed to have a distribution but are
instead treated as fixed and estimable parameters, which may lead to

difficulties when making out of sample predictions.

In order to overcome the pittfalls of fixed effect (within) estimation, other

approaches have been proposed in the literature.

However, the pittfals of fixed effect estimation are overcome by these ap-

proaches at the cost of assumptions which are sometimes even more un-

pleasent in particular from the viewpoint of labor economics.
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4.5 Between estimator

At the opposite extreme of the fixed effect (within) analysis, the basic model

Yit = αi +Xitβ + εit (192)

can be transformed to fully exploit the variability “between individuals”,

ignoring completely the variability “within individuals”.

Let αi = α + νi. Whatever the properties of αi and εit, if 192 is the true

model also the following must be true.

Ȳi. = α + X̄i.β + νi + ε̄i. (193)

Ȳi. = α + X̄i.β + ηi.

where:

• Ȳi. = 1
T

∑T
t=1 Yit is the mean of the outcomes observed for each individual

over time;

• X̄i. = 1
T

∑T
t=1Xit is the row vector of the means of the explanatory factors

observed for each individual over time;

• ε̄i. = 1
T

∑T
t=1 εit is the mean of the residuals for each individual over time;

• ηi = νi + ε̄i. is the composite error term of the model.

Note that 193 involves N observations on the means for each individual.
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To estimate with OLS a model like 193, we need the standard assumptions

on εit, but we do not need to assume that the individual specific effects are

fixed and estimable, as in the case of fixed effect estimation.

However, these individual effects are now included in the error term, and
therefore we have to assume that the individual specific effects are uncorre-

lated with the explanatory factors:

COV (ηi, X̄i.) = COV (νi, X̄i.) = 0 (194)

Under this assumption, OLS applied to equation 193 gives an unbiased and

consistent estimate of β:

E(bBE) = β (195)

bBE is usually called between estimator.

Note that, since bBE ignores the information offered by the within variability,

it will not in general be efficient.

It seems then natural to search for transformations of the data that could

exploit both the “within” and the “between” variability in order to gain
efficiency with respect to both the within and the between estimators.
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4.5.1 OLS, “within” and “between” estimators

In search for an estimator that exploits both the within and the between
variability of the data we begin by observing that OLS can be expressed as

a weighted average of the within and the between estimators.

Let’s add to our notation the following definitions

• Overall means of the outcomes and of the explanatory factors:

=
Y=

n∑

i=1

T∑

t=1
Yit (196)

=
X=

n∑

i=1

T∑

t=1
Xit (197)

• Moment matrices of the overall sums of squares and cross products:

S0
xx =

n∑

i=1

T∑

t=1
(xit−

=
x)(xit−

=
x)′ (198)

S0
xy =

n∑

i=1

T∑

t=1
(xit−

=
x)(yit−

=
y). (199)

• Moment matrices of the “within” sums of squares and cross products:

Sw
xx =

n∑

i=1

T∑

t=1
(xit − x̄i.)(xit − x̄i.)

′ (200)

Sw
xy =

n∑

i=1

T∑

t=1
(xit − x̄i.)(yit − ȳi.). (201)

• Moment matrices of the “between” sums of squares and cross products:

Sb
xx =

n∑

i=1
T (x̄i.−

=
x)(x̄i.−

=
x)′ (202)

Sb
xy =

n∑

i=1
T (x̄i.−

=
x)(ȳi.−

=
y). (203)
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It is easy to verify that:

SO
xx = Sw

xx + Sb
xx (204)

SO
xy = Sw

xy + Sb
xy. (205)

Then, the three estimators of β that we have examined so far are:

• Fixed effect (within) estimator (which so far we indicated as bFE):

bw = [Sw
xx]

−1Sw
xy (206)

• Between estimator:

bb = [Sb
xx]

−1Sb
xy (207)

• OLS estimator:

bO = [SO
xx]

−1SO
xy = [Sw

xx + Sb
xx]

−1[Sw
xy + Sb

xy]. (208)

Note that we can write:
Sw

xy = Sw
xxb

w (209)

Sb
xy = Sb

xxb
b (210)

Substituting 209 and 210 in the OLS estimator 208 we obtain:

bO = Fwbw + F bbb, (211)

where

Fw = [Sw
xx + Sb

xx]
−1Sw

xx = I − F b. (212)

which shows that the OLS estimator can be interpreted as weighted average of

the within and between estimators with weights that depend on the “within”
versus “between” variability of the explanatory factors.

However:

• in general this is not the most efficient way to exploit jointly the within
and between variability;

• it leads to biased and inconsistent estimates of the true causal effect β

if the individual specific effects are correlated with the regressors.
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4.6 Random effects estimator

Starting again from our basic model:

Yit = α +Xitβ + νi + εit (213)

Yit = α +Xitβ + wit

in order to exploit efficiently the between and within variation we have to:

• abandon the assumption that the individual effects are fixed and es-

timable;

• assume that they measure our individual specific ignorance which should

be treated similarly to our general ignorance εit;

• assume that the composite error term is uncorrelated with the regressors;

• explicit carefully the covariance structure of the two types of ignorance.

A starting set of assumptions on the covariance structure is the following:

E[εit|X] = E[νi|X] = 0, (214)

E[ε2
it|X] = σ2

ε , (215)

E[ν2
i |X] = σ2

ν, (216)

E[εitνj|X] = 0 for all i, t, and j, (217)

E[εitεjs|X] = 0 if t 6= sor i 6= j, (218)

E[νiνj|X] = 0 if i 6= j. (219)

In terms of the composite error term

wit = νi + εit (220)

these assumptions imply:

E[w2
it|X] = σ2

ε + σ2
ν, (221)

E[witwis|X] = σ2
ν for t 6= s. (222)
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For the T observations on individual i let:

• wi = [wi1, wi2, . . . , wiT ]′

• Ω = E(wiw
′
i)

so that

Ω =




σ2
ε + σ2

ν σ2
ν σ2

ν . . . σ2
ν

σ2
ν σ2

ε + σ2
ν σ2

ν . . . σ2
ν

...
σ2

ν σ2
ν σ2

ν σ2
ε + σ2

ν




= σ2
ε I + σ2

νii
′ (223)

where i is a T column vector of 1s.

Hence the covariance matrix of the error term wit in the basic model 213 is:

V = I⊗ Ω =




Ω 0 0 · · · 0
0 Ω 0 · · · 0

...
0 0 0 · · · Ω



. (224)

which clearly implies that OLS estimates of 213 are inefficient and the method

of Generalised Least Squares (GLS) is necessary for efficiency.

Note that this covariance structure implies that:

• the error terms for different units i are uncorrelated;

• the error terms of the same unit i in two different periods t and s are

correlated independently of the distance between t and s.

This covariance structure makes probably more sense if i indicates families

and t individuals within families.

When t is really time, a decreasing correlation across time (but within indi-

viduals) would probably make more sense.
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4.6.1 GLS estimation of Random Effects models

Assuming that V is known, the GLS estimation of the basic model

Yit = α+Xitβ + [νi + εit] (225)

implies the estimation of the transformed model

V−1
2Yit = α + V−1

2Xitβ + V−1
2wit (226)

where

V−1
2 = I⊗ Ω−1

2 (227)

and

Ω−1
2 = I − θ

T
ii′ (228)

and

θ = 1 −
σε√

T σ2
ν + σ2

ε

(229)

This implies that the transformation for each individual-time observation is

Yit − θȲi. = (1 − θ)α+ (Xit − θX̄i.)β + [(1 − θ)νi + (εit − θε̄i.)] (230)

The transformed model can be estimated with OLS to obtain an efficient and

consistent estimate of β under the assumptions 214–219.

Note that:

• if σ2
v = 0 → θ = 0

in which case the random effect estimator is identical to the OLS esti-
mator on the pooled individual-time observations, because there is no

individual heterogeneity (νi = 0).

• if σ2
ε = 0 → θ = 1

in which case the only existing ignorance would be the individual–specific

one captured by νi and the random effect estimator would be identical

to the fixed effect estimator.
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4.6.2 Feasible GLS estimation of random effects models

Since the covariance matrix V is usually not known, a feasible GLS procedure
has to be adopted.

A standard procedure (see Greene or the STATA manual) is the folliwing:

• use the fixed effects specification to get bFE which is a consistent but
inefficient estimate of β;

• use bFE to get the fixed effect (within) estimated residuals and then

compute a consistent estimate of σ2
ε ;

• use similarly the between specification to get a consistent estimate of

Tσ2
ν + σ2

ε ;

• use the estimates obtained above to compute an estimate of θ = 1 −
σε√

T σ2
ν+σ2

ε

;

• Using the estimated θ, apply the GLS transformation to the data and

estimate equation 230 to get the consistent and efficient estimate bRE of
β.
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4.6.3 Random effects, within, between and OLS estimators

Like the OLS estimator, also the random effect estimator can be interpreted
as a weighted average of the within and between estimator.

Using the same notation introduced in section 4.5.1 it can be shown (see

Maddala, 1971 and Hausman and Taylor, 1981) that:

bRE = F̃wbw + (I − F̃w)bb (231)

where

F̃w = [Sw
xx + λSb

xx]
−1Sw

xx, (232)

λ =
σ2

ε

σ2
ε + Tσ2

ν

= (1 − θ)2. (233)

Note again that:

• If σ2
v = 0 → λ = 1:

the random effect estimator is identical to the OLS estimator because

there is no individual heterogeneity; in this case the OLS estimator is the

most efficient and in particular more efficient than the within estimator

because it uses both the within and the between information.

• If σ2
v > 0 → λ < 1:

the OLS estimator would put too much weight on the between informa-

tion, because it imposes λ = 1 while the best estimator (GLS) uses the

correct λ < 1.

• If σ2
ε = 0 → λ = 0:

the only uncertainty is generated by the individual heterogeneity. In this

case the best (GLS) estimator coincides wiht the within estimator while
again OLS would put too much weight on the between information.
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So the random effect estimator seems preferable because

• it uses efficiently the between and within information;

• it coincides with the within or OLS estimator when the efficient use of

the information requires to do so;

• it allows for the estimation of the effects of time invariant explanatory

factors;

• it can be used more convincingly for out of sample predictions.

However, the random effect estimator is consistent only when the individual

specific effects are not correlated with the explanatory factors: i.e. it requires

COV (εitX) = COV (νiX) = 0 (234)

This is a crucial assumption but:

• it is hard to find it convincing in most labor applications;

• it should anyway be tested before accepting a random effect specification;

• if rejected, appropriate solutions (IV estimation) should be adopted in
order to maintain a random effect specification.

We will consider below how to test for the orthogonality condition and what
to do in case of a rejection,

Before, however, we want to explore an attempt, proposed by Mundlack

(1978), to reconcile the fixed effects and random effects models.
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4.7 Mundlak (1978): a reconciliation of fixed and random effects

models?

Mundlack (1978) suggests that:

• the distinction between random and fixed effects models is “arbitrary

and unnecessary”.

• “when the model is properly specified the GLS-random effect estimator

is identical to the fixed effect (within) estimator; thus there is in fact

only one estimator.”

• “The whole literature which has been based on an imaginary difference

between the two estimators, starting with Balestra and Nerlove (1966), is

based on an incorrect specification which ignores the correlation between
the effects and the explanatory variables in the regression.”

Given the basic model

Yit = Xitβ + αi + εit (235)

where αi is potentially correlated with Xit. The starting point of Mundlack’s

contribution is to take an explicit account of such relationship assuming that

αi = X̄i.δ + ui (236)

where a crucial assumption is that:

E(ui|X) = 0 (237)

As long as δ 6= 0

E(αi|X) = X̄i.δ 6= 0 (238)

and the GLS random effect estimation of 235 would give biased and incon-
sistent estimates of β.

Note that this is an attempt to model explicitly the individual heterogeneity.

We have seen another, but different, attempt to do so in Ashenfelter and

Kruger (1994).
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Substituting 236 into 235 we obtain

Yit = Xitβ + X̄i.δ + [ui + εit] (239)

and now note that this is a well specified random effect model, because

E(ui + εit|X) = 0 (240)

Equation 239 can be rearranged to obtain

Yit = (Xit − X̄i.)β + X̄i.(β + δ) + [ui + εit] (241)

Yit = (Xit − X̄i.)φ+ X̄i.ψ + [ui + εit] (242)

Mundlack (1978) shows that if we apply the GLS transformation to 242 we

obtain that:

φ̂GLS = bFE → E(bFE) = E(φ̂GLS) = β (243)

ψ̂GLS = bBE → E(bBE) = E(ψ̂GLS) = β + δ (244)

which shows that, if 239 is the specification that takes into account correctly

the correlation between individual effects and regressors,

• the fixed effect estimator coincides with the GLS estimator and is unbi-

ased for β;

• the between estimator is unbiased for β only if the orthogonality condi-

tion holds (i.e. δ = 0).

This conclusion, however,

• is crucially based on the linear specification 236 of the correlation be-
tween αi and X ;

• disregards efficiency considerations in the comparison between random

effects and fixed effects estimators.
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4.7.1 A test for random or fixed effects

Since the random effect estimator appears superior when the individual spe-
cific effects are orthogonal to the regressors, it would be nice to test this

orthogonality condition.

The framework leads naturally to a Hausman’s specification test (see Haus-

man, 1978 and Hausman and Taylor, 1981).

Given the random effect specification

Yit = α+Xitβ + [νi + εit] (245)

and assuming that the orthogonality condition holds for the εit, the null
hypothesis that we want to test is:

Ho : E(νi|Xit) = 0 (246)

while the alternative hypothesis is:

H1 : E(νi|Xit) 6= 0 (247)

• Under Ho:

– the fixed effect estimator bFE is consistent but inefficient;

– the random effect estimator bRE is consistent and efficient;

• Under H1:

– the fixed effect estimator bFE remains consisitent;

– the random effect estimator bRE becomes inconsistent;

Therefore, under the null hypothesis the two estimators should not differ and

this observation provides the basis for the test.
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The test statistic that follows from this intuition is:

W = [bFE − bRE]′[V ar(bFE − bRE)]−1[bFE − bRE] (248)

but the problem is how to compute the covariance matrix of the difference

between the two estimators: V ar(bFE − bRE).

The crucial result of Hausman (1978) is to show that in general the covariance

of an efficient estimator with its difference from an inefficient estimator is zero,
which in our case implies:

Cov(bRE , [bFE − bRE]) = Cov(bRE , bFE) − V ar(bRE) = 0 (249)

Using this result we can write:

V ar(bFE − bRE) = V ar(bFE) + V ar(bRE) − Cov(bRE , bFE) − Cov(bRE , bFE)′

V ar(bFE − bRE) = V ar(bFE) − V ar(bRE) (250)

Therefore the test statistic can be written as:

W = [bFE − bRE]′ [V ar(bFE) − V ar(bRE)]−1 [bFE − bRE] (251)

which is asymptotically distributed as a chi-squared with K degrees of free-

dom (i.e. the dimension of the vector of parameters β to be estimated).

If W is “greater” than the preferred critical value it means that there is a
statistically significant difference between the two estimators,

Since only bFE is consistent we have to conclude that bRE is inconsistent

because the orthogonality condition fails.
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Hausman and Taylor (1981) describe two other tests based on the same in-

tuition but applied to the comparison of

• the random effect and the between estimator,

• the within and the between estimators,

and show that both these tests are identical to the one described above in

contrast with what was previously thought.

Hausman (1978) proposes also a convenient regression format for the test.

Consider the regression:

Yit − θYit = (1 − θ)α+ (Xit − θX̄i.)β + (Xit − X̄i.)δ + uit (252)

where θ = 1 − σε√
T σ2

ν+σ2
ε

.

Note that this regressions amounts to estimate with OLS the “GLS-transformed”

data adding also the “within-transformed” explanatory factors (i.e. the sim-
ple deviations from the individual specific means) to the regression.

The Hausman test described above for Ho : E(νi|Xit) = 0 is equivalent to a

test that the parameters δ are equal to 0 in the auxiliary regression 252.
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4.7.2 Random effects models and Instrumental Variables

Consider the model
Yit = Xitβ + Ziγ + αi + εit (253)

in which we would like to consider the individual effects αi as random but

the Hausman test rejects the null hypothesis that they are uncorrelated with

the regressors.

In this situation there are two solutions:

• We could abandon the random effect specification for a fixed effects
specification,

– but we would run into the problems of fixed effect estimation and
in particular we would not be able to estimate γ.

• We could search for instruments , i.e. variables satisfying the following
two conditions:

– they should not be correlated with the individual specific effects αi;

– they should be correlated with the regressors Xit andZi.

Hausman and Taylor (1981) (HT), Amemiya and MacCurdy (1986) (AM)

and Breush, Mizon and Schmid (1989) (BMS) show how the panel structure

of the data could be exploited to find (or better construct) these instruments.

Cornwell and Rupert (1988) compare the efficiency of the three procedures.
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The intuition of HT is that the panel structure of the data may offer good

instruments if we are ready to assume that a sufficient number of explanatory

factors are asymptotically uncorrelated with the individual specific effects.

Given the model:
Yit = Xitβ + Ziγ + αi + εit (254)

assume that:

• Xit = [X1it : X2it]

denotes a row of the NT ×K matrix of time varying explanatory factors

which can be divided in two sub-matrices:

– X1it denotes the K1 exogenous time varying factors for which:

P lim
N→∞

1

N
X1itαi = 0 (255)

– X2it denotes the K2 correlated time varying factors for which:

P lim
N→∞

1

N
X2itαi 6= 0 (256)

• Zi = [X1i : X2i]

denotes a row of theNT×G matrix of time invariant explanatory factors

which can be divided in two sub-matrices:

– Z1i denotes the G1 exogenous time invariant factors for which:

P lim
N→∞

1

N
Z1iαi = 0 (257)

– Z2i denotes the G2 correlated time invariant factors for which:

P lim
N→∞

1

N
Z2iαi 6= 0 (258)
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Consider the GLS transformation of the model:

Yit − θȲi. = (Xit − θX̄i.)β + (1 − θ)Ziγ + [(1 − θ)αi + (εit − θε̄i.)] (259)

where θ = 1 − σε√
T σ2

ν+σ2
ε

.

There are K + G regressors of which K2 + G2 are correlated with the error

term. So in order to achieve identification we need at least the same number
of instruments. HT propose the following list of instruments:

• (X1it − X̄1i.)
K1 instruments given by the fixed effect transformation of the exogenous

time varying regressors;

• (X2it − X̄2i.)

K2 instruments given by the fixed effect transformation of the correlated

time varying regressors; note that by construction these instruments are
orthogonal to the αi because they are the estimated residuals of an OLS

regressions of X2it on the αi (see section 4.4.3).

• X̄1i.

K1 instruments given by the averages for each individual across time of

the exogenous time varying regressors.

• Z1

G1 instruments corresponding to the exogenous time invariant regressors.

The order condition for identification is:

K1 +K2 +K1 +G1 ≥ K1 +K2 +G1 +G2 (260)

K1 ≥ G2

If this condition is satisfied, IV estimation or 259 using the instruments de-

scribed above, provides consistent estimates of all the parameters β and γ.
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AM propose instead the following list of instruments for the same transformed

model 259:

• K1 instruments obtained from (X1it − X̄1i.) ;

• K2 instruments obtained from (X2it − X̄2i.) ;

• TK1 instruments obtained from X̃1i where X̃1i denotes the NT × KT

matrix where each column contains values of Xit for a single time period;
For example the column t of X̃1i is [X11t . . . X11t, . . . , X1Nt . . . X1Nt];

• G1 instruments obtained from Z1.

The order condition for identification is in this case:

K1 +K2 + TK1 +G1 ≥ K1 +K2 +G1 +G2 (261)

TK1 ≥ G2

which is less restrictive than the HT condition.

Note that for these instruments to be valid the exogenous factors X1 have to

be uncorrelated at each point in time with the indiviudal effects. However,
it is hard to imagine situations in which the HT instruments are valid and

these are not.

98



BMS propose a third possible list of instruments for the same transformed

model 259:

• K1 instruments obtained from (X1it − X̄1i.) ;

• K1 instruments obtained from X̄1i. ;

• TK1 instruments obtained from (X̃1it − X̄1i.);

• TK2 instruments obtained from (X̃2it − X̄2i.);

• G1 instruments obtained from Z1

where note that (X̃1it − X̄1i.) provide only T − 1 linearly indepedend instru-
ments, and similarly (X̃2it − X̄2i.).

The order condition for identification is in this case:

K1 +K2 +K1 + (T − 1)K1 + (T − 2)K2 +G1 ≥ K1 +K2 +G1 +G2(262)

TK1 + (T − 1)K2 ≥ G2

which is the least restrictive condition, but requires stronger exogeneity as-

sumptions (see BMS).

Cornwell and Rupert (1988) compare the gain in efficiency delivered by the

AM and BMS procedures with respect to the HT procedure and conclude,
on the basis of a “returns to schooling” example, that efficiency gains are

limited to the coefficients of time-invariant endogenous variables.
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4.8 Extensions

The analysis described so far can be extended to deal with:

• fixed time effect;

• unbalanced panel data;

These extensions can be found in Greene (1987), Hsiao (1989) and in several
of the articles quoted in the reading list.

4.9 Panel data analysis in STATA

See copies from STATA manuals
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5 Panel data with discrete dependent variables

Consider the following problem (Card and Sullivan, 1988):

• i = {1 . . . N} denote a sample of individuals;

• t = {1 . . . T} time periods in which each individual is observed;

• for each individual in each period we observe the employment status

Y =





1 if i is employed in period t

0 if i is unemployed in period t
(263)

• we also observe a (row) vector of K explanatory factors Xit;

• we assume that the observed binary outcome Yit are independent con-

ditional on Xit and on an unobservable individual time invariant effect
αi;

• the probability that individual i is employed in period t is assumed to

be logistic:

Pr(Yit = 1|Xit, αi) =
eαi+Xitβ

1 + eαi+Xitβ
(264)

The problem is to estimate how the explanatory factors affect the probability

of employment controlling for the unobservable heterogeneity.

Card and Sullivan are in particular interested in evaluating how participa-
tion into a training program affects the probability of employment after the

program.

If the outcome where not discrete we would use one of the techniques dis-

cussed above, but we cannot do so.
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5.1 The conditional maximum likelihood approach

The solution proposed by Chamberlain (1980) consists in maximizing a con-
ditional version of the likelihood function.

The intuition is that the αi disappear from the likelihood if the likelihood of

a given employment sequence (i.e. of a given individual) is calculated condi-

tioning on the total number of periods of employment for that individual.

To understand this approach consider the simplest case of T = 2 and, to
simplify the notation, let’s indicate with Pr({0, 1}) the probability of the

sequence {0, 1} conditional on αi and Xi.
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Consider first the case of a number of unemployment periods equal to 1.

Using this notation we can write

Pr(Yi2 = 1|Xi, αi,
2∑

t=1
Yit = 1) = (265)

Pr({0, 1})|{0, 1} or {1, 0}) =

Pr({0, 1})
Pr({0, 1}) + Pr({1, 0})

=

Pr(Yi1 = 0|Xi, αi)Pr(Yi2 = 1|Xi, αi)

Pr(Yi1 = 0|Xi, αi)Pr(Yi2 = 1|Xi, αi) + Pr(Yi1 = 1|Xi, αi)Pr(Yi2 = 0|Xi, αi)
=

Substituting the corresponding Logit probabilities from equation 264

1
1+e(αi+xi1β)

e(αi+xi2β)

1+e(αi+xi2β)

1
1+e(αi+xi1β)

e(αi+xi2β)

1+e(αi+xi2β) + e(αi+xi1β)

1+e(αi+xi1β)
1

1+e(αi+xi2β)

=

e(αi+xi2β)

e(αi+xi1β) + e(αi+xi2β)

where the individual effects cancel out and we obtain

e(xi2β)

e(xi1β) + e(xi2β)

e(xi2−xi1)β

1 + e(xi2−xi1)β

This finding suggests that we can write the likelihood in terms of the proba-

bilities of the possibile sequences of outcomes for each individual.
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For T = 2 there are four possible sequences. The probability of the first one

is the probability we have just calculated:

Pr({0, 1}|Xi, αi,
2∑

t=1
Yit = 1) =

e(xi2−xi1)β

1 + e(xi2−xi1)β
= Pr({0, 1}|.) (266)

Similarly for the second sequence:

Pr({1, 0}|Xi, αi,
2∑

t=1
Yit = 1) =

e(xi1−xi2)β

1 + e(xi1−xi2)β
= Pr({1, 0}|.) (267)

There are two other possible sequences: {0, 0} and {1, 1}. But note that:

Pr({1, 1}|Xi, αi,
2∑

t=1
Yit = 2) = 1 = Pr({1, 1}|.) (268)

Pr({0, 0}|Xi, αi,
2∑

t=1
Yit = 0) = 1 = Pr({0, 0}|.) (269)

These two sequences do not contribute to the likelihood because they are

independent of the parameters.

So the likelihood can be written as

L = ΠN
i=1Pr({0, 1}|.)W01Pr({1, 0}|.)W10Pr({0, 0}|.)W00Pr({1, 1}|.)W11

= ΠN
i=1


 e(xi1−xi2)β

1 + e(xi1−xi2)β




W10

 e(xi2−xi1)β

1 + e(xi2−xi1)β




W01

1W001W11 (270)

where:

• W01 = 1 for individuals whose sequence is {0, 1};

• W10 = 1 for individuals whose sequence is {1, 0};

• W00 = 1 for individuals whose sequence is {0, 0};

• W11 = 1 for individuals whose sequence is {0, 0}.
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Note that:

• the individual fixed effects are eliminated from this likelihood thanks to
a transformation that is analogous to first differencing in linear panel

models.

• The individuals for which the outcome is always 0 or always 1 do not

contribute to the likelihood. In other words the information that they

provide is not used to estimate β, which in some occasions may be un-

satisfactory.

– these individuals are unaffected by the explanatory factors;

– if 99% of the sample is in this situation, we may still estimate a

significant β out of the 1% of the sample which changed outcome

during the observation period;

– no weight would be given to the fact that for the vast majority of

the sample the explanatory factors do not affect the outcome.

• This conditional likelihood approach cannot be adopted in the presence

of lagged dependent variables, which is the problem addressed specifi-
cally by Card and Sullivan (1988)

5.2 Fixed effects conditional logit estimation in STATA

See copies from STATA manuals

5.3 Applications
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