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1 Proofs and Technical Results

1.1 Characterization of the Production Process

The function ϕ∗t (x) is exponential in x and multiplicative in t, as depicted in Figure 1. As

t → 0 the function ϕ∗t : [0, X] → R converges to zero uniformly. As t grows, the function

ϕ∗t grows multiplicatively in t. Growth in t reflects a progressive increase in the number of

active cases, that is, growing task juggling over time.

Figure 1: The path of the production process

Note. The figure depicts the distribution of active cases, by number of steps away from being done. On the growth

path it is exponential.

Growth in task juggling also explains why the function ϕt (x) is exponential in x. This

is because, when the worker juggles an increasing number of projects over time, projects

proceed at a progressively slower pace (that pace is η/At, and remember that At grows

linearly with t). As projects grind along more and more slowly, the constant rate ν of newly

inputed cases must squeeze in the progressively smaller “empty segment” available near

X. This effect accounts for the exponential shape of ϕt (x) . Yet, remarkably, despite these

complex dynamics the output rate is constant through time. This remarkable property of

the output rate results from two opposite effects offsetting each other: on the one hand, cases

move through at progressively slower rates, which tends to progressively reduce the output
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rate. On the other hand, the mass of cases that are almost done increases with time (this is

because ϕt (0) grows with t), which tends to progressively increase the output rate. These

two effects exactly offset each other along a constant growth path, and thus the output rate

is time-invariant.

Theorem 1 goes a long way towards characterizing a constant growth path, but there is still

some work to do. We need to characterize the relationship that links ν, η and ω along a

growth path or, said differently, we need to understand what level of output is possible given

certain input and effort rates. According to Theorem 1, the relationship between ν, η and ω

along a growth path is given by equation (5). Define

h (y) =
X

η
y − log (y) .

Then equation (5) reads

h (ν) = h (ω) .

The next lemma characterize the function h (·).

Lemma 1 The function h (y) is strictly convex on (0,∞), converges to infinity at y = 0 and

y = +∞, and it has its minimum at y = η/X.

Proof. One can easily verify that h (0) = +∞ = h (∞) , h′ (y) = X
η
− 1

y
, and finally

h′′ (y) = 1
y2
.

Figure 2 depicts h (y). For a particular level of ν, the ω that solves equation (5) is represented

Figure 2: Input and output rates

Note. The figure depicts the relationship between input and output rates on a growth path.
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graphically as the point on the horizontal axis that achieves the same level of the function

h. But not all solutions to equation (5) can be part of a growth path. Which solutions are

consistent with a growth path is described in the next proposition.

Proposition 1 ν, η and ω are related by (5) if and only if ν > η
X
. In that case, the ω

generated by the pair [ν, η] is the unique solution that is smaller than η
X

to the equation

h (ν) = h (ω).

Proof. The solution ω = ν to equation (5) is not acceptable because then A∗t ≡ 0 and (3)

is not well-defined. Nor can we accept solutions where ω > ν, for then ϕ∗t (x) and A∗t would

be negative and thus the quadruple identified in Theorem 1 would not meet the definition

of a growth path. So we need to find solutions with ω < ν. This implies ν > η
X
. The rest of

the Proposition follows immediately from Theorem 1.

The threshold η/X can be interpreted as the minimum input rate compatible with the worker

not being idle; we will discuss this interpretation at the end of this section. Proposition 1

shows how to construct the entire growth path associated with any pair (ν, η). Given a

constant input rate ν > η
X

, one can uniquely identify the corresponding output rate ω < η
X

which solves h (ν) = h (ω). Then the triple (ν, η, ω) is plugged into the expressions for ϕ∗t (x)

and A∗t to obtain a full characterization of the growth path.

Proposition 1 shows that our solution only makes sense if the input rate is sufficiently large.

What happens otherwise? Then the worker can solve projects faster than she opens them,

and in that case our model predicts At ≡ 0. In this case we do not have a model of task

juggling, but rather one of “undercommitment.” We conclude this section by analyzing this

case. In the analysis we allow for an “initial condition” A0 ≥ 0, a possibly positive mass of

cases active at time zero. (This hypothesis deviates from our assumption that at t = 0 the

mass of active cases is zero.) The next proposition shows that if ν < η
X

then At shrinks over

time, and if ν = η
X

then At is constant.

Proposition 2 (steady-state and shrink paths) If ν = η
X

then there are a continuum

of steady-state paths, indexed by the mass of projects active at time zero, A0. In each of

these steady states At ≡ A0, the output rate is equal to η/X, and the duration of projects is

increasing in A0.

If ν < η
X

then whatever the value of A0, after a transition period it will be At ≡ 0 and, from

then on, the duration of projects will be zero and the output rate will be equal to ν.

Proof. Let’s start with the case ν < η
X
. In this case the setup of the model described in

Section 3 is no longer applicable, since that setup implicitly required that At > 0, which now
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cannot be guaranteed. In fact, if we start at time 0 with A0 > 0 and open projects at rate

ν < η
X
, we expect ωt > ν, and so we are on a temporary “shrink path” where over time At

will shrink down to zero. After At hits zero, the worker completes projects instantaneously

as soon as they are opened, and the system settles into a long-run path with ωt = ν < η
X
,

and At = Ct = Dt = 0. In this long-run steady state, increasing ν increases ω contrary to

Proposition 1.

In the case ν = η
X

, let us conjecture ν = ω and so by (4) we have At = A. Fix any A0 > 0.

Note that this requires assuming an initial load of projects at time zero. Then (3) reads

ω =
η

A0

ϕt (0) ,

whence for all t > 0

ϕt (0) =
A0

η
ω. (1)

Now, by definition we have that for all x > 0 we have ϕt (0) = ϕτ (x) for some τ < t. This

observation, together with (1), implies

ϕτ (x) =
A0

η
ω for all x, τ.

Then (1) reads

A0 =

∫ X

0

ϕt (x) dx =
X

η
A0ω.

Note that this equality reduces to the identity ω = η/X, which yields no new information.

This means that any A0 is compatible with the steady state path when ν = η/X. Whatever

is the initial condition of open projects A0, choosing ν = η/X will exactly perpetuate that

mass of open projects.

The completion time of a newly opened project is the interval of time it takes the worker to

process the A0 projects that have precedence over it. We are looking for the time interval

Ct it takes for a worker to complete A0 projects. At a completion rate ω, Ct solves

A0 =

∫ t+Ct

t

ω ds

= ωCt =
η

X
Ct,

whence the completion time of a newly activated project is Ct = A0

η
X, which is increasing
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in A0. Given an arrival rate α, a project assigned at t finds

A0 + αt− ωt

projects in front of it. The duration of a project assigned at t is the time it takes to complete

these projects given an output rate ω. Thus the duration of a project assigned at t is also

increasing in A0.

The threshold η/X can be interpreted as the minimum input rate compatible with the worker

not being idle given that the worker exerts effort at rate η. To understand this interpretation,

fix effort η and observe that if ν ′ < η/X then there exists a smaller effort rate η′ such that

η′/X = ν ′ ≥ ω′ (the inequality is true because cannot be more cases being completed than

there are coming in). This means that if the input rate ν ′ falls below η/X then the worker

could achieve the same level of output ω′ by exerting effort at the lower rate η′. This is

equivalent to saying that the worker is idle at rate η − η′.

Proof of Proposition 1 a), b).

Proof. a) There are three types of solutions to the equation h (ν) = h (ω). The first one is

ν = ω. This solution is not compatible with the analysis we have carried out because then

At = 0. Then there are two kinds of solutions, one where ν < η
X
< ω, which is not acceptable

for then At < 0. The remaining kind of solution is ν > η
X
> ω. Under this restriction, the

shape of h (·) guarantees the required property.

b) Fix ν, and consider two values η > η′ with associated ω and ω′. The output rates ω and

ω′ solve

h (ω; η/X) = h (ν; η/X)

h (ω′; η′/X) = h (ν; η′/X) .

Combining these equalities yields

h (ω′; η′/X)− h (ω; η/X) = h (ν; η′/X)− h (ν; η/X) . (2)

Now, an easy to verify property of h (y; η/X) that, for any y1 < y2,

h (y1; η′/X)− h (y1; η/X) < h (y2; η′/X)− h (y2; η/X) .

Setting y1 = ω, y2 = ν, and combining with (2) gives

h (ω; η′/X)− h (ω; η/X) < h (ω′; η′/X)− h (ω; η/X)

h (ω; η′/X) < h (ω′; η′/X) (3)
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Now, remember that ω′ < η′/X. Then either ω > η′/X, in which project ω > ω′ and there

is nothing to prove, or else ω < η′/X. In this project both ω and ω′ lie on the decreasing

portion of the function h (·; η′/X). Then equation (3) yields ω > ω′.

Next we prove a technical lemma that is necessary to prove Proposition 1 c).

Lemma 2 Take any triple
(
ν, ω, η

X

)
where ω = Ω (ν; η/X) . Then

∣∣ν − η
X

∣∣ > ∣∣ω − η
X

∣∣ . That

is, along a growth path the actual output rate is closer to the efficient output rate than

is the input rate.

Proof. For any ν > η
X
> ω we can write

h (v) = h
( η
X

)
+

∫ ν− η
X

0

h′
( η
X

+ s
)
ds (4)

h
( η
X

)
= h (ω) +

∫ η
X
−ω

0

h′ (ω + r) dr.

Make the change of variable r = −ω + η
X
− s in the second equation, and one gets

h
( η
X

)
= h (ω)−

∫ 0

−ω+ η
X

h′
( η
X
− s
)
ds

= h (ω) +

∫ −ω+ η
X

0

h′
( η
X
− s
)
ds.

Substitute into equation (4) to get

h (v) = h (ω) +

∫ −ω+ η
X

0

h′
( η
X
− s
)
ds+

∫ ν− η
X

0

h′
( η
X

+ s
)
ds.

Since the triple
(
ν, ω, η

X

)
solves (5), it follows that h (v) = h (ω) and so we may rewrite

equation (4) once more as∫ η
X
−ω

0

−h′
( η
X
− s
)
ds =

∫ ν− η
X

0

h′
( η
X

+ s
)
ds (5)
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Now, from the proof of Lemma 1 we have h′ (y) = X
η
− 1

y
and so

h′
( η
X

+ s
)

=
X

η
− 1

η
X

+ s
=
X

η

(
1− 1

1 + sX
η

)
=
X

η

(
sX
η

1 + sX
η

)

h′
( η
X
− s
)

=
X

η
− 1

η
X
− s

=
X

η

(
1− 1

1− sX
η

)
= −X

η

(
sX
η

1− sX
η

)

for any s such that h′
(
η
X
− s
)

is well defined, that is, s < η
X
. If in addition s > 0 then

h′
( η
X

+ s
)

=
X

η

(
sX
η

1 + sX
η

)
<
X

η

(
sX
η

1− sX
η

)
= −h′

( η
X
− s
)
. (6)

Now let us turn to equation (5) and let us suppose, by contradiction, that ν − η
X
< η

X
− ω.

We may then rewrite that equation as∫ η
X
−ω

0

−h′
( η
X
− s
)
ds−

∫ ν− η
X

0

h′
( η
X

+ s
)
ds = 0∫ ν− η

X

0

[
−h′

( η
X
− s
)
− h′

( η
X

+ s
)]
ds+

∫ η
X
−ω

ν− η
X

−h′
( η
X
− s
)
ds = 0

The range of s in the above equation is at most
(
0, η

X
− ω

)
⊂
(
0, η

X

)
, and therefore (6)

applies. This guarantees that the first integral is strictly positive. The second integral is

strictly positive as well. Hence the equation cannot be verified. We therefore contradict our

assumption that ν − η
X
< η

X
− ω.

Proof of Proposition 1 c)

Proof. Equation (5) reads

(ν − Ω (ν; η/X)) =
η

X
[log (ν)− log (Ω (ν; η/X))] . (7)

Fix ν and differentiate both sides of (7) with respect to η to get

−∂Ω (ν; η/X)

∂η
=

1

X
[log (ν)− log (Ω (ν; η/X))]− η

X

1

Ω (ν; η/X)

∂ (Ω (ν; η/X))

∂η
.
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Rearranging we get

∂Ω (ν; η/X)

∂η

[
η

X

1

Ω (ν; η/X)
− 1

]
=

1

X
[log (ν)− log (Ω (ν; η/X))] (8)

=
1

η
(ν − Ω (ν; η/X)) , (9)

where the second equation susbtitutes from (7). Now, fix η and differentiate (8) with respect

to ν. This yields

∂2Ω (ν; η/X)

∂η∂ν

[
η

X

1

Ω (ν; η/X)
− 1

]
−∂Ω (ν; η/X)

∂η

η

X

1

(Ω (ν; η/X))2

∂Ω (ν; η/X)

∂ν

=
1

X

[
1

ν
− 1

Ω (ν; η/X)

∂Ω (ν; η/X)

∂ν

]
,

which can be rewritten as

∂2Ω (ν; η/X)

∂η∂ν

[
η

X

1

Ω (ν; η/X)
− 1

]
=

1

X

[
1

ν
+
∂Ω (ν; η/X)

∂ν

1

Ω (ν; η/X)

(
∂Ω (ν; η/X)

∂η
η

1

Ω (ν; η/X)
− 1

)]
.

(10)

The term in brackets on the left-hand side is positive, so ∂2Ω(ν;η/X)
∂η∂ν

has the same sign as the

term in brackets on the right hand side of (10). We need to sign this term. To this end,

substitute for ∂Ω(ν;η/X)
∂η

from (9) so that the term in brackets on the right hand side of (10)

reads

1

ν
+
∂Ω (ν; η/X)

∂ν

1

Ω (ν; η/X)

(ν − Ω (ν; η/X))(
η
X

1
Ω(ν;η/X)

− 1
) 1

Ω (ν; η/X)
− 1


=

1

ν
+
∂Ω (ν; η/X)

∂ν

1

Ω (ν; η/X)

[
ν − η

X
η
X
− Ω (ν; η/X)

]
. (11)

Now, to get an expression for ∂Ω(ν;η/X)
∂ν

, fix η and differentiate both sides of (7) with respect
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to ν to get

1− ∂Ω (ν; η/X)

∂ν
=

η

X

[
1

ν
− 1

Ω (ν; η/X)

∂Ω (ν; η/X)

∂ν

]
∂Ω (ν; η/X)

∂ν

[
η

X

1

Ω (ν; η/X)
− 1

]
=

η

Xν
− 1

∂Ω (ν; η/X)

∂ν
=

Ω (ν; η/X)

ν

η
X
− ν

η
X
− Ω (ν; η/X)

.

Substituting into (11) yields

1

ν
− 1

ν

(
ν − η

X
η
X
− Ω (ν; η/X)

)2

=
1

ν

[
1−

(
ν − η

X
η
X
− Ω (ν; η/X)

)2
]
. (12)

By Lemma 2,
ν − η

X
η
X
− Ω (ν; η/X)

> 1

and so equation (12) is negative. Thus the right hand side of (10) is negative, which implies
∂Ω(ν;η/X)
∂ν∂η

< 0.

Proof of Proposition 1 d),e)

Proof. d) Suppose the triple
(
ν, ω, η

X

)
solves (5). We need to show that for any scalar r > 0,

the triple
(
rν, rω, r η

X

)
also solves (5), that is, that for any r > 0 we have

[log (rν)− log (rω)] =
X

rη
(rν − rω) .

Write

r
η

X
[log (rν)− log (rω)] = r

η

X
[log (ν)− log (ω)]

= r (ν − ω) = (rν − rω) .

where the second equality follows because the triple
(
ν, ω, η

X

)
solves (5). The equality

between the first and the last element in this chain of equalities shows that the triple(
rν, rω, r η

X

)
solves (5).

e) Immediate from inspection of Figure 2.
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Proof of Proposition 2.

Proof. (a) The completion time Ct of a project started at t is the time that it takes all

the projects in front of it to clear. These projects are At, and given an output rate ω that

duration is given by the solution to the following equation∫ t+Ct

t

ω ds = At,

which equals

ωCt = (ν − ω) t.

Solving for Ct yields the desired expression. Let us now turn to duration. Given an arrival

rate α, a project assigned at t finds

αt− ωt

projects in front of it. Given an output rate of ω, these projects will take

Dt =
(α− ω)

ω
t

to complete. This is the duration of a project assigned at t.

(b) From part (a) we have

Ct =

(
ν

Ω (ν; η/X)
− 1

)
t =

(
1

Ω (1; η/νX)
− 1

)
t,

where the second equality follows from Proposition 1 d). From Proposition 1 (b) we have

that Ω is increasing in its second argument, whence increasing ν decreases Ω (1; η/νX) and

increases Ct.

As for duration, from part (a) we have

Dt =

(
α

Ω (ν; η/X)
− 1

)
t.

From Proposition 1 (a) we have that Ω is decreasing in its first argument, whence increasing

ν decreases Ω (ν; η/X) and increases Dt.

1.2 Proofs for Section 4

The next lemma suggests that we should look for equilibria in which clients play just two

simple strategies.
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Lemma 3 In any lobbying equilibrium in which the number of active projects grows, two

strategies payoff-dominate all others: strategy 1 (·) which denotes immediate and perpetual

lobbying starting from time of assignment, and strategy 0 (·) which denotes never lobbying.

Proof. We prove that any strategy Sτ (·) (typically displaying “intermittent” lobbying) is

dominated either by strategy 0 (·) or by strategy 1 (·). Let us show this next. First, if Sτ (·)
is caught up, then it is dominated by the strategy 0 (·) which achieves the same completion

date at a lower lobbying cost. This is because after a strategy is caught up, it cannot go any

faster than its assignment vintage. Suppose then that Sτ (·) is not caught up.

Denote

χ (t) =

∫ t

τ

Sτ (s) ds

where by construction χ (·) is non-decreasing, χ (τ) = 0 and χ (t) ≤ t− τ. The function χ (t)

can be interpreted as a measure representing how much activity has occurred on the project

between τ and t or, equivalently, the state of advancement of the project. When strategy Sτ
is employed, the project’s advancement at time t is given by

xS (t) = X −
∫ t

τ

·
xS (r) dr

= X −
∫ t

τ

η

Ar
dχ (r) .

Denote by T the time at which the project is done, that is, T is the smallest value that

solves xS (T ) = 0. Create a new strategy S̃ (t) which equals 1 for t ∈ [τ, τ + χ (T )] and 0 for

t > τ + χ (T ). Then we have

0 = xS (T )

= X −
∫ T

τ

η

Ar
dχ (r)

= X −
∫ τ+χ(T )

τ

η

Aχ−1(y−τ)

dy

≥ X −
∫ τ+χ(T )

τ

η

Ay
dy

= X −
∫ τ+χ(T )

τ

η

Ay
S̃τ (y) dy = xS̃ (τ + χ (T ))

where the third equality reflects a change of variable y = τ+χ (r) , and the inequality follows

because χ (y) ≤ y− τ , hence χ−1 (y − τ) ≥ y and Aχ−1(y−τ) ≥ Ay. The inequality shows that

strategy S is just done at time T , whereas strategy S̃ is more than done already by time
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τ + χ (T ) ≤ T . This means that the duration under strategy S̃ is smaller than that under

strategy S. . Denote by T̃ ≤ τ + χ (T ) the time strategy S̃ is done. Let us now turn to

lobbying expenditures. Strategy S’s lobbying expenditure is given by κχ (T ). Strategy S̃’s

lobbying expenditure is given by κ
(
T̃ − τ

)
. Since T̃ ≤ τ + χ (T ) , strategy S̃’s lobbying

expenditure is smaller than strategy S’s.

Summing up, we have shown that duration and lobbying expenditure are smaller under

strategy S̃ than under strategy S. Thus strategy S̃ dominates S. Notice that, since under

S̃ a project ends at T̃ ≤ τ + χ (T ) , strategy S̃ is payoff-equivalent to strategy 1 (·) . Thus

strategy S is dominated by strategy 1 (·) .

The intuition behind Lemma 3 is the following. Lobbying “buys advancement” at the speed

of η/At. If it is profitable to lobby at the assignment of the project, then it makes no sense

to have interludes of no lobbying. During those interludes the project does not advance,

but the mass of active projects At keeps growing, making lobbying (once it is restarted)

less productive. Of course, even taking Lemma 3 into account, lobbying equilibria could

potentially be very complex because of the possibility of non-constant growth equilibria in

which the input rate is not constant through time.

Proof of Proposition 3

Proof. a) We show that there is a time-invariant z such that the value at the time of

assignment of two players who follow the two different equilibrium strategies (lobby and

not) are the same. The lobbyist’s value at the time of assignment for a project assigned at

τ , assuming the project is lobbied from assignment through to completion, is (−κ−B)Cτ
where Cτ is the completion time of a project started at τ. Substituting for Ct from Proposition

2, the value is given by

V Lτ (z) = (−κ−B)

[
ν (z)

Ω (ν (z) ; η/X)
− 1

]
τ.

The value of the non-lobbyist at the time of assignment for a project assigned at τ , assuming

that she never lobbies, is computed as follows. First, the fraction of non-lobbyist projects

inputed in each instant is given by ν
ν(z)

, and consequently the output rate is made up of a

fraction ν
ν(z)

of non-lobbyist projects. Thus, a project assigned at τ finds

zατ − ν

ν (z)
Ω (ν (z) ; η/X) τ
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non-completed projects in front of it. These projects are completed at rate ν
ν(z)

Ω (ν (z) ; η/X),

so it takes [
zα

ν
ν(z)

Ω (ν (z) ; η/X)
− 1

]
τ

before all non-lobbied projects assigned before τ are completed. Therefore the value of a

non-lobbyist at the time of assignment, assuming that she never lobbies in the future, is

V Nτ (z) = −B

[
zα

ν
ν(z)

Ω (ν (z) ; η/X)
− 1

]
τ

In an equilibrium with lobbyists and non-lobbyists, z∗ solves V Lτ (z∗) = V Nτ (z∗) , or

(−κ−B)

[
ν (z∗)

Ω (ν (z∗) ; η/X)
− 1

]
= −B

[
α

ν
z∗

ν (z∗)

Ω (ν (z∗) ; η/X)
− 1

]
(13)

It is important to note that condition is independent of τ . Thus, if a z∗ exists that verifies

equation (13), this z∗ will be time-invariant, consistent with the definition of constant-

growth lobbying equilibrium. We conclude the proof by showing that at least one z∗ exists

that verifies equation (13) and it lies between ν
α

and ν
α

+ 1
α

(
α− η

X

)
.

The lowest possible value of z∗ is ν
α
. If z falls below this level, there are not enough non-

lobbyists to fill ν, and then non-lobbied projects get started immediately. Formally, in this

project the expression in brackets on the RHS of (13) is no greater than the brackets on the

LHS, whence V Nτ (z) > V Lτ (z) . So z ≤ ν
α

is not consistent with equilibrium. The highest

possible value of z∗ is that for which ν (z∗) = η/X. At this level the LHS of (13) is zero,

and so V Nτ (z) < V Lτ (z) . Intuitively, if z∗ were any higher, then ν (z∗) < η/X and then

completion times would be zero, and then anyone who lobbyied could do so at zero cost. Thus

such z cannot be part of the equilibrium in which not everyone lobbies. To find an expression

for this bound, write η/X = ν∗ = ν + (1− z)α, and solving for z yields z = ν
α

+ 1
α

(
α− η

X

)
.

We have shown that on the lower bound of the interval z ∈
(
ν
α
, ν
α

+ 1
α

(
α− η

X

))
we have

V Nτ (z) > V Lτ (z) , and on the upper bound V Nτ (z) < V Lτ (z) . Since the two functions

V Nτ (z) and V Lτ (z) are continuous in z over the interval, they must cross at least once.

Any crossing is consistent with an equilibrium.

b) Suppose not, so that ν∗ ≤ η
X
. Then α > ν∗, and so a project assigned at τ finds a backlog

of (α− ν∗) τ unopened projects in front of it. Since projects are opened at rate ν∗, the time

it takes the last project in the backlog to be opened is

(α− ν∗)
ν∗

τ.
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This expression, which we will call the unopened duration, is positive and grows linearly

with τ . This time can be eliminated by lobbying from assignment time all the way through

completion, at a total cost that is proportional to completion time. Proposition 2 proves

that when ν∗ ≤ η
X

completion time is stationary, i.e., it is the same for projects opened at

any τ . Therefore, the strict best response of all projects assigned after a certain τ̂ is to lobby

all the way through completion time, in order to eliminate the unopened duration which

exceeds lobbying costs. But then for every t > τ̂ not lobbying cannot be equally profitable

as lobbying. Therefore we have shown that if ν∗ ≤ η
X

, a positive mass cannot be not lobbying

after τ̂ . Yet the construction requires that in any instant α − ν∗ projects are not lobbied,

and this mass is positive because by assumption α > η
X
≥ ν∗. Contradiction.

c) The equilibrium z∗ solves (13), which can be rearranged as

κ+B

B

[
ν (z)

Ω (ν (z) ; η/X)
− 1

]
=

[
α

ν
z

ν (z)

Ω (ν (z) ; η/X)
− 1

]
and rewritten as [

κ+B

B
− α

ν
z

]
ν (z)

Ω (ν (z) ; η/X)
=

[
κ+B

B
− 1

]
. (14)

The LHS in (14) is the product of two positive and decreasing functions of z, and therefore it

is decreasing in z. The RHS does not depend on z. Therefore equation (14) admits a unique

solution z∗.

d) Rewrite slightly (14) as

H

(
z;
κ

B
,
α

ν

)
=

[
κ

B
+ 1− α

ν
z

]
ν (z)

Ω (ν (z) ; η/X)
=
κ

B
. (15)

The functionH
(
z; κ

B
, α
ν

)
is decreasing in α

ν
and η

X
, so increasing α

ν
or η

X
results in a downward

shift of the function. Since the function is decreasing in z, shifting the function downward

results in a shift to the left of the intersection point between the function and the constant

line κ
B
. Thus z∗ is decreasing in α

ν
and η

X
.

The function H
(
z; κ

B
, α
ν

)
is increasing in κ

B
, and increasing κ

B
by δ results in an upward shift

of δ ν(z)
Ω(ν(z);η/X)

> 1 in the function. So increasing κ
B

results in the function shifting upward

by more than κ
B

. So, start from a given κ
B

and focus on the resulting equilibrium z∗, which

is the z at which the function H attains height κ
B
. Then increase κ

B
. At z∗, the function H

moves up by more than κ
B
. This means that z∗ is to the left of the new equilibrium. Thus

z∗ is increasing in κ
B
.

e) Follows directly from d) and the definition ν (z) = ν + (1− z)α.

14



Proof of Proposition 4

Proof. Suppose by contradiction that, as κ increases to κ̂, we have ẑ < z∗. Then by

definition we have ν (ẑ) > ν (z∗). Since by Proposition 1 c) ∂Ω(ν;η/X)
∂ν∂η

< 0, it follows from

problem (6) that η̂ < η∗. Then Ω (ν (ẑ) ; η̂/X) < Ω (ν (z∗) ; η∗/X) , and then the entire LHS

of equation (15) becomes larger. Since the RHS stays unchanged, equation (15) can no

longer be satisfied, and so we do not have an equilibrium. Therefore it must be that as κ

increases to κ̂, the input rate decreases. It then follows from problem (6) that the worker’s

effort increases.

1.3 Proofs for Section 5

Define

F = f
ν − ω
ω

t,

so that Ft = F · t. Also define

ϕ∗∗t (x) =
(ν − ω) + F

η
ω t e

(ν−ω)+F
η

x,

and recall the previous definition

A∗t = (ν − ω) t.

Proof of Proposition 5

Proof. (a) Condition (7) is verified because

∂ϕ∗∗t (x)

∂t
− ∂ϕ∗∗t (x)

∂x

η

At + Ft

=
(ν − ω) + F

η
ω e

(ν−ω)+F
η

x − (ν − ω) + F

η
ω t e

(ν−ω)+F
η

x (ν − ω) + F

η

η

(ν − ω + F ) t

=
(ν − ω) + F

η
ω e

(ν−ω)+F
η

x − (ν − ω) + F

η
ω e

(ν−ω)+F
η

x

= 0.
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Condition (8) is verified because

ω =
η

At + Ft
ϕ∗∗t (0)

=
η

(ν − ω + F ) t

(ν − ω) + F

η
ω t

= ω.

Condition (4) can be verified immediately.

Condition (1) reads

A∗t =

∫ X

0

ϕ∗t (x) dx.

Substituting for ϕ∗∗t (x) and A∗t yields

(ν − ω) t =

∫ X

0

(ν − ω) + F

η
ω t e

(ν−ω)+F
η

x dx

=
(ν − ω) + F

η
ω t

∫ X

0

e
(ν−ω)+F

η
x dx

=
(ν − ω) + F

η
ω t

η

(ν − ω) + F
e

(ν−ω)+F
η

x

∣∣∣∣X
x=0

= ω t e
(ν−ω)+F

η
x
∣∣∣X
x=0

= ω t
[
e

(ν−ω)+F
η

X − 1
]
.

We can rewrite this equality as

ν

ω
− 1 =

[
e

(ν−ω)+F
η

X − 1
]

ν

ω
= e

(ν−ω)+F
η

X

log (ν)− log (ω) = (ν − ω + F )
X

η

(b). Fix any ν and let ω∗∗ be the output rate in a constant growth path with forgetful

worker. Then ω∗∗ solves equation (9), which can be written as

h (ω) = h (ν) + f · ν − ω
ω

X

η
. (16)

Suppose f > 0, and by contradiction, that the output rate in a constant growth path with

16



non-forgetful worker, call it ω∗, is smaller than ω∗∗. Since obviously, ω∗∗ < ν, we have

ω∗ ≤ ω∗∗ < ν. By definition of ω∗ we have h (ω∗) = h (ν) , and since the function h is

convex, it follows that h (ω∗∗) ≤ h (ν) . But then since f > 0, the right-hand side in (16)

must exceed the left-hand side, and so the equation cannot be satisfied. We have reached a

contradiction.

17



2 The data

We use data from one Italian court specialized in labor controversies for the industrial area

of Milan. Our initial dataset contains all the 58,280 cases filed between January 1, 2000

and December 31, 2005. For 92% of these cases we have information on their entire history,

while the remaining cases are observed up to December 3, 2007. These trials have been

assigned to 31 judges who have been in service for at least one quarter during the period

of observation. For the judges who were already in service on January 1, 2000, we also

have information on the cases that were assigned to them in the previous year and we can

therefore compute a measure of their backlog at the beginning of the period under study. For

the judges who took service during the period of observation (or less than one year before

January 1, 2000) we analyze their productivity starting from the fifth of their quarters of

service, in order to give them time to settle in. All the cases assigned to them during the

first year of service (including those that were transferred to them from previous judges who

left for another office or retired) are nevertheless counted to compute their backlog at the

beginning of the second year of service in which we start to analyze their productivity. Thus

all the judges that we analyze have at least one year of tenure, and for each we know the

backlog of not-yet-disposed cases at the beginning of the period of observation.13

We consider quarters as the relevant time unit and we focus on the subset of judges who

received full workloads of new controversies within each quarter. We therefore eliminated

the quarter observations concerning judges who did not receive a full workload because they

retired, were transferred, were contemporaneously assigned to other duties or were in long

term absence periods during which they were not receiving cases. At the end of this selection

process, out of the original 31 judges we are left with the unbalanced panel of 21 judges.

These judges, on average, receive 128 cases per quarter-judge, see Table 1 in this appendix.

In Italy, as in other countries, the law (Art. 25 of the Constitution) requires that judges

receive a randomly assigned portfolio of new cases. This random assignment is designed to

ensure the absence of any relationship between the identity of judges and the characteristics

of the cases assigned to them. In the court that we consider the random assignment is imple-

mented in the following way. Every morning the judges in service are ordered alphabetically

starting from a randomly extracted letter of the alphabet. The cases filed during the day

are then assigned in alphabetic sequence to all judges in service. In Coviello et al. (2012) we

report the results of formal tests for the random allocation of cases to judges. These tests

show that characteristics of the cases are independent of the identity of judges, who thus

13If a judge retires or is transferred to a different court (for whatever reasons) his/her cases are either
all assigned to a new judge (thereby going in the initial backlog of the substitute) or they are distributed
randomly to all the other judges in the court. We will later discuss the implications of these events for the
econometric analysis.

18



receive, in the long run, qualitatively and quantitatively similar portfolios of controversies.

For each of the 21 comparable judges we compute three outcomes measures: duration of

trials (the average number of days from filing until the date in which a sentence is deposited

by the judge, or the case is settled, or censoring occurs in the 8 % of cases for which we do

not see the end of the trial for cases assigned in the quarter); completion time (the average

number of days elapsing between the date in which the first hearing is held and the date the

case is completed for cases assigned in the quarter); throughput (the average number of cases

closed in the quarter). We use the exact dates of scheduling of the hearings of a case, to

compute two measures of task juggling: the number of active cases (the average number of

cases which have received a first hearing but are not yet closed); the number of new opened

cases (computed as the average number of cases which have received a first hearing in the

quarter but are not yet closed). We leverage the random allocation of cases to judges to

compute measures of ability (the average number of hearings to close a case assigned per

unit of time ) and effort (computed as the average number of scheduled hearings per unit of

time in the quarter).

Descriptive statistics of the variables used in the analysis are displayed in Table 1.
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Table 1: Descriptive statistics

Mean sd p25 p50 p75 n

Outcomes:
D : Total duration 290 77 229 285 352 381
C : Completion time 163 58 117 160 200 381
ω : Closed cases per quarter 119 35 98 122 145 381

Task juggling:
A : Active cases at the end of quarter 210 74 154 206 266 381
ν : New opened cases per quarter 127 46 93 137 159 381

Workload, effort, and ability:
α : New assigned cases per quarter 128 28 111 132 146 381
η : Hearings held in a quarter 396 125 306 425 490 381
X : Hearings to close cases 3.2 .57 2.9 3.3 3.6 381
η
X : Standardized effort per quarter 128 45 98 131 156 381

Note: All variables are defined as judges quarterly averages. Total duration is defined as the number of days elapsing between

the filing date and the date in which the case is completed. Completion time is defined as the number of days elapsing between

the date in which the first hearing is held and the date in which the case is completed. Active cases at the end of the quarter
are defined as the number of cases which have received a first hearing but are not yet closed. New opened cases per quarter

are defined as the number of cases that receive the first hearing in the quarter. Standardized effort per quarter is defined as

the ratio between the number of hearings held by the judge in a quarter for any case, independently of the time of assignment,
(hearings held in a quarter) and the number of hearings that were necessary to decide the cases assigned to the judge in the

quarter (hearings to close cases).
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