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Abstract.

In this paper, we give a short overview of some propensity score matching
estimators suggested in the evaluation literature and we provide a set of Stata
programs which we illustrate using the National Supported Work (NSW) demon-
stration widely known in labor economics.
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1 Introduction

In the evaluation literature, data often do not come from randomized trials but from
(non-randomized) observational studies. In seminal work, Rosenbaum and Rubin (1983)
proposed propensity score matching as a method to reduce the bias in the estimation of
treatment effects with observational data sets. These methods have become increasingly
popular in medical trials and in the evaluation of economic policy interventions.

Since in observational studies assignment of subjects to the treatment and control
groups is not random, the estimation of the effect of treatment may be biased by the
existence of confounding factors. Propensity score matching is a way to “correct” the
estimation of treatment effects controlling for the existence of these confounding factors
based on the idea that the bias is reduced when the comparison of outcomes is performed
using treated and control subjects who are as similar as possible. Since matching sub-
jects on an n-dimensional vector of characteristics is typically unfeasible for large n,
this method proposes to summarize pre-treatment characteristics of each subject into a
single-index variable (the propensity score) which makes the matching feasible.

In this paper, we give a short overview of some propensity score matching estimators
suggested in the evaluation literature and we provide a set of Stata programs which we
illustrate using the National Supported Work (NSW) demonstration widely known in
labor economics. In using these programs, it should be kept in mind that they only
allow to reduce, and not to eliminate, the bias generated by unobservable confounding
factors. The extent to which this bias is reduced depends crucially on the richness
and quality of the control variables on which the propensity score is computed and the
matching performed. To be more precise, the bias is eliminated only if the exposure
to treatment can be considered to be purely random among individuals who have the
same value of the propensity score.
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2 Estimation of average treatment effects based on propensity scores

2 The propensity score

The propensity score is defined by Rosenbaum and Rubin (1983) as the conditional
probability of receiving a treatment given pre-treatment characteristics:

p(X) ≡ Pr{D = 1|X} = E{D|X}. (1)

whereD = {0, 1} is the indicator of exposure to treatment andX is the multidimensional
vector of pre-treatment characteristics. Rosenbaum and Rubin (1983) show that if the
exposure to treatment is random within cells defined by X, it is also random within
cells defined by the values of the mono-dimensional variable p(X). As a result, given
a population of units denoted by i, if the propensity score p(Xi) is known the Average
effect of Treatment on the Treated (ATT) can be estimated as follows:

τ ≡ E{Y1i − Y0i|Di = 1} (2)

= E{E{Y1i − Y0i|Di = 1, p(Xi)}}
= E{E{Y1i|Di = 1, p(Xi)}−E{Y0i|Di = 0, p(Xi)}|Di = 1}

where the outer expectation is over the distribution of (p(Xi)|Di = 1) and Y1i and
Y0i are the potential outcomes in the two counterfactual situations of (respectively)
treatment and no treatment.

Formally, the following two hypotheses are needed to derive (2) given (1).1

Lemma 1. Balancing of pre-treatment variables given the propensity score.
If p(X) is the propensity score, then

D ⊥ X | p(X). (3)

Lemma 2. Unconfoundedness given the propensity score.
Suppose that assignment to treatment is unconfounded, i.e.

Y1, Y0 ⊥ D | X. (4)

Then assignment to treatment is unconfounded given the propensity score, i.e

Y1, Y0 ⊥ D | p(X). (5)

If the Balancing Hypothesis of Lemma 1 is satisfied, observations with the same
propensity score must have the same distribution of observable (and unobservabe) char-
acteristics independently of treatment status. In other words, for a given propensity
score, exposure to treatment is random and therefore treated and control units should
be on average observationally identical. Any standard probability model can be used to
estimate the propensity score. For example, Pr{Di = 1|Xi} = F (h(Xi)), where F (.) is
the normal or the logistic cumulative distribution and h(Xi) is a function of covariates
with linear and higher order terms. The choice of which higher order terms to include

1See Rosenbaum and Rubin (1983) or Imbens (2000) for a proof.
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is determined solely by the need to obtain an estimate of the propensity score that sat-
isfies the Balancing Hypothesis. Inasmuch as the specification of h(Xi) which satisfies
the Balancing Hypothesis is more parsimonious than the full set of interactions needed
to match cases and controls on the basis of observables, the propensity score reduces
the dimensionality problem of matching treated and control units on the basis of the
multidimensional vector X.2

The program pscore.ado estimates the propensity score and tests the Balancing
Hypothesis (Lemma 1) according to the following algorithm:3

1. Estimate the probit (or logit) model:

Pr{Di = 1|Xi} = Φ(h(Xi)) (6)

where Φ denotes the normal (logistic) c.d.f. and h(Xi) is a starting specification
which includes all the covariates as linear terms without interactions or higher
order terms.

2. Split the sample in k equally spaced intervals of the propensity score, where k is
determined by the user and the default is 5.

3. Within each interval test that the average propensity score of treated and control
units do not differ.

4. If the test fails in one interval, split the interval in halves and test again.

5. Continue until, in all intervals, the average propensity score of treated and control
units do not differ.

6. Within each interval, test that the means of each characteristic do not differ
between treated and control units. This is a necessary condition for the Balancing
Hypothesis.4

7. If the means of one or more characteristics differ, inform the user that the balanc-
ing properties is not satisfied and that a less parsimonious specification of h(Xi)
is needed.

Steps 2-7 of the algorithm can be restricted to the common support. This restriction
implies that the test of the balancing property is performed only on the observations
whose propensity score belongs to the intersection of the supports of the propensity score
of treated and controls. Imposing the common support condition in the estimation of
the propensity score may improve the quality of the matches used to estimate the ATT.5

2It is important to note that the outcome plays no role in the algorithm for the estimation of the
propensity score. This is equivalent, in this context, to what happens in controlled experiments in
which the design of the experiment has to be specified independently of the outcome.

3Note that the Unconfoundedness Hypothesis of Lemma 2 cannot be tested.
4Note that it is not sufficient in the sense that the balancing may not hold for higher order moments

of the distribution of characteristics. So, to be precise, the program does not test the Balancing
Hypothesis, but only one of its implications. In future versions of the program we plan to add tests for
higher moments of the distribution of characteristics.

5See the next section for a further discussion of the common support condition.
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3 Matching estimators of the ATT based on the Propen-
sity Score

An estimate of the propensity score is not enough to estimate the ATT of interest using
equation (2). The reason is that the probability of observing two units with exactly the
same value of the propensity score is in principle zero since p(X) is a continuous variable.
Various methods have been proposed in the literature to overcome this problem and
four of the most widely used are Nearest Neighbor Matching, Radius Matching, Kernel
Matching and Stratification Matching.

Beginning with the latter, the Stratification method consists of dividing the range
of variation of the propensity score in intervals such that within each interval treated
and control units have on average the same propensity score. For practical purposes
the same blocks identified by the algorithm that estimates the propensity score can be
used. Then, within each interval in which both treated and control units are present, the
difference between the average outcomes of the treated and the controls is computed.
The ATT of interest is finally obtained as an average of the ATT of each block with
weights given by the distribution of treated units across blocks.

One of the pitfalls of the Stratification method is that it discards observations in
blocks where either treated or control units are absent. This observation suggests an
alternative way to match treated and control units, which consists of taking each treated
unit and searching for the control unit with the closest propensity score, i.e. the Nearest
Neighbor. Although it is not necessary, the method is usually applied with replacement,
in the sense that a control unit can be a best match for more than one treated unit. Once
each treated unit is matched with a control unit, the difference between the outcome of
the treated units and the outcome of the matched control units is computed. The ATT
of interest is then obtained by averaging these differences.

While in the case of the Stratification method there may be treated units which are
discarded because no control is available in the their block, in the case of the Nearest
Neighbor method all treated units find a match. However, it is obvious that some
of these matches are fairly poor because for some treated units the nearest neighbor
may have a very different propensity score and nevertheless he would contribute to the
estimation of the treatment effect independently of this difference. The Radius Matching
and Kernel Matching methods offer a solution to this problem. With Radius Matching
each treated unit is matched only with the control units whose propensity score falls in
a predefined neighborhood of the propensity score of the treated unit. If the dimension
of the neighborhood (i.e. the radius) is set to be very small it is possible that some
treated units are not matched because the neighborhood does not contain control units.
On the other hand, the smaller the size of the neighborhood the better is the quality of
the matches. With Kernel Matching all treated are matched with a weighted average
of all controls with weights that are inversely proportional to the distance between the
propensity scores of treated and controls.

It is clear from the above considerations that these four methods reach different
points on the frontier of the tradeoff between quality and quantity of the matches and
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none of them is a priori superior to the others. Their joint consideration, however, offers
a way to assess the robustness of the estimates.

It should also be noted that with all these methods the quality of the matches may
be improved by imposing the common support restriction. Note, however, that in this
way high quality matches may be lost at the boundaries of the common support and the
sample may be considerably reduced. So imposing the common support restriction is
not necessarily better (see Lechner (2001a)). All of our programs allow for the common
support option as discussed below.

We now proceed to a more detailed and formal description of these estimators.
We start with the joint analysis of Nearest Neighbor Matching and Radius Matching
which can be described in a common framework, moving next to Kernel Matching and
Stratification Matching.

Nearest Neighbor Matching (attnd.ado and attnw.ado) and Radius
Matching (attr.ado)

Let T be the set of treated units and C the set of control units, and Y Ti and Y Cj be
the observed outcomes of the treated and control units, respectively. Denote by C(i)
the set of control units matched to the treated unit i with an estimated value of the
propensity score of pi. Nearest neighbor matching sets

C(i) = min
j
k pi − pj k (7)

which is a singleton set unless there are multiple nearest neighbors. In practice, the case
of multiple nearest neighbors should be very rare, in particular if the set of characteristics
X contains continuous variables; the likelihood of multiple nearest neighbors is further
reduced if the propensity score is estimated and saved in double precision.

In radius matching,
C(i) = {pj | k pi − pj k< r} , (8)

i.e. all the control units with estimated propensity scores falling within a radius r from
pi are matched to the treated unit i.

In both nearest neighbor and radius matching, denote the number of controls matched
with observation i ∈ T by NC

i and define the weights wij =
1
NC
i

if j ∈ C(i) and wij = 0
otherwise. Then, the formula for both types of matching estimators can be written as
follows (where M stands for either nearest neighbor matching or radius matching and
the number of units in the treated group is denoted by NT ):

τM =
1

NT

X
i∈T

Y Ti − X
j∈C(i)

wijY
C
j

 (9)

=
1

NT

X
i∈T

Y Ti −
X
i∈T

X
j∈C(i)

wijY
C
j


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=
1

NT

X
i∈T

Y Ti −
1

NT

X
j∈C

wjY
C
j

where the weights wj are defined by wj = Σiwij . .

To derive the variances of these estimators the weights are assumed to be fixed and
the outcomes are assumed to be independent across units.

V ar(τM ) =
1

(NT )2

X
i∈T

V ar(Y Ti ) +
X
j∈C

(wj)
2V ar(Y Cj )

 (10)

=
1

(NT )2

NTV ar(Y Ti ) +
X
j∈C

(wj)
2V ar(Y Cj )


=

1

NT
V ar(Y Ti ) +

1

(NT )2

X
j∈C

(wj)
2V ar(Y Cj ).

In the programs attnd.ado, attnw.ado, and attr.ado, standard errors are obtained
analytically using the above formula, or by bootstrapping using the bootstrap option.

As far as the difference between attnd.ado and attnw.ado is concerned, it is most
easily understood by briefly describing the way nearest neighbors are computationally
determined in the two programs. To save on computing time, nearest neighbors are
not determined by comparing treated observations to every single control, but by first
sorting all records by the estimated propensity score and then searching forward and
backward for the closest control unit(s). If for a treated unit forward and backward
matches happen to be equally good, there are two computationally feasible options
to obtain analytical standard errors while at the same time exploiting the very fast
forward and backward search strategy: attnw.ado gives equal weight (hence the letters
“nw” for nearest neighbor and equal weight) to the groups of forward and backward
matches; attnd.ado randomly draws either the forward or backward matches (hence the
letters “nd” for nearest neighbor and random draw). In practice, the case of multiple
nearest neighbors should be very rare, in particular if the set of X’s contains continuous
variables, in which case both attnw.ado and attnd.ado should give equal results. The
likelihood of multiple nearest neighbors is further reduced if the propensity score is
estimated and saved in double precision, which is what pscore.ado does by default.

Kernel matching method (attk.ado)

The kernel matching estimator is given by

τK =
1

NT

X
i∈T

(
Y Ti −

P
j∈C Y

C
j G(

pj−pi
hn

)P
k∈C G(

pk−pi
hn

)

)
(11)
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where G(·) is a kernel function and hn is a bandwidth parameter. Under standard
conditions on the bandwidth and kernel ,P

j∈C Y
C
j G(

pj−pi
hn

)P
k∈C G(

pk−pi
hn

)
(12)

is a consistent estimator of the counterfactual outcome Y0i. In the program attk.ado,
standard errors are obtained by bootstrapping using the bootstrap option. Users can
choose between the default Gaussian kernel or the Epanechnikov kernel.

Stratification method (atts.ado)

This method is based on the same stratification procedure used for estimating the
propensity score. Note that by construction, in each block defined by this procedure
the covariates are balanced and the assignment to treatment can be considered random.
Hence, letting q index the blocks defined over intervals of the propensity score, within
each block the program computes

τSq =

P
i∈I(q) Y

T
i

NT
q

−
P
j∈I(q) Y

C
j

NC
q

(13)

where I(q) is the set of units in block q while NT
q and NC

q are the numbers of treated
and control units in block q.

The estimator of the ATT in equation 2 based on the Stratification method is then
computed with the following formula:

τS =

QX
q=1

τSq

P
i∈I(q)DiP
∀iDi

(14)

where the weight for each block is given by the corresponding fraction of treated units
and Q is the number of blocks.

Assuming independence of outcomes across units, the variance of τS is computed by

V ar(τS) =
1

NT

"
V ar(Y Ti ) +

QX
q=1

NT
q

NT

NT
q

NC
q

V ar(Y Cj )

#
(15)

In the program atts.ado, standard errors are obtained analytically using the above
formula, or by bootstrapping using the bootstrap option.

4 Syntax

pscore and att* are regression-like commands
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pscore treatment
£
varlist

¤ £
weight

¤ £
if exp

¤ £
in range

¤
, pscore(newvar)

£
blockid(newvar) detail logit comsup level(#) numblo(#)

¤
attnd outcome treatment

£
varlist

¤ £
weight

¤ £
if exp

¤ £
in range

¤ £
,

pscore(scorevar) logit index comsup detail bootstrap reps(#) noisily

dots
¤

attnw outcome treatment
£
varlist

¤ £
weight

¤ £
if exp

¤ £
in range

¤ £
,

pscore(scorevar) logit index comsup detail bootstrap reps(#) noisily

dots
¤

attr outcome treatment
£
varlist

¤ £
weight

¤ £
if exp

¤ £
in range

¤ £
,

pscore(scorevar) logit index radius(#) comsup detail bootstrap

reps(#) noisily dots
¤

attk outcome treatment
£
varlist

¤ £
weight

¤ £
if exp

¤ £
in range

¤ £
,

pscore(scorevar) logit index epan bwidth(#) comsup detail bootstrap

reps(#) noisily dots
¤

atts outcome treatment
£
varlist

¤ £
if exp

¤ £
in range

¤
, pscore(scorevar)

blockid(blockvar)
£
comsup detail bootstrap reps(#) noisily dots

¤
5 Options

Note the following points:

• It is important to clean up your dataset before running this suite of Stata pro-
grams, in particular to delete observations with missing values.

• In pscore, the option pscore(newvar) is compulsory.
• pscore and the att* programs are closely related in that users will typically
first run pscore to estimate the propensity score and test whether the balancing
property holds, and then proceed to estimating the ATT with one or more of the
att* programs.

• Note, however, that all att* programs are stand-alone programs, i.e. if users
prefer to estimate the propensity score with their own procedure, they can do so,
specifying the name of the estimated propensity score as an input variable in the
att* programs.

• If users are confident about the “correct” specification for the propensity score,
that specification can be used directly in the att* programs to estimate the
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propensity score without first running pscore. This is actually advisable if boot-
strapped standard errors are requested because, when users do not specify their
own previously estimated propensity score, the bootstrap encompasses the esti-
mation of the propensity score based on the specification given by varlist. Re-
estimating the propensity score at each replication of the bootstrap procedure is
recommended to account for the uncertainty associated with the estimation of
the propensity score. Even more so when the comsup option is specified because
in this case the region of common support changes with every bootstrap sample,
and bootstrapped standard errors pick up this uncertainty as well. So, typically,
users would first identify a specification satisfying the balancing property - us-
ing e.g. pscore - and then provide exactly this specification in varlist and use
bootstrapped standard errors.

• For atts, in addition to the estimated propensity score, users must provide a
variable containing the block identifier for the estimated propensity score. There-
fore, in the case of atts it is most convenient to rely on pscore because it nicely
generates both the estimated propensity score variable and the block identifier.

5.1 Options for pscore

pscore(newvar) is a compulsory option and asks users to specify the variable name for
the estimated propensity score.

blockid(newvar) allows users to specify the variable name for the block number of the
estimated propensity score.

detail displays more detailed output documenting the steps performed to obtain the
final results.

logit uses a logit model to estimate the propensity score instead of the default probit
model.

comsup restricts the analysis of the balancing property to all treated plus those controls
in the region of common support. A dummy variable named it:comsup is added to the
dataset to identify the observations in the common support.

level(#) allows to set the significance level of the tests of the balancing property.
The default is 0.01. Note that this significance level applies to the test of each single
variable of the vector X of pre-treatment characteristics, i.e. the balancing property is
not rejected only in case it holds for every single X. This is a relatively conservative
approach because of the following argument. Assume that the significance level is set
to 0.05, that X consists of 20 variables, and that the tests of the balancing property

are mutually independent. Then, with probability

µ
20
1

¶
(0.05)1(0.95)19 = 0.37, one

of the tests rejects the balancing property although it actually holds true.

numblo(#) allows to set the number of blocks of equal score range to be used at the
beginning of the test of the balancing hypothesis. The default is set to 5 blocks.



10 Estimation of average treatment effects based on propensity scores

5.2 Options common to all att* commands

comsup restricts the computation of the ATT to the region of common support.

detail displays more detailed output documenting the steps performed to obtain the
final results.

bootstrap bootstraps the standard error of the treatment effect.

reps(integer) specifies the number of bootstrap replications to be performed. The
default is 50. This option produces an effect only if the bootstrap option is specified.

noisily requests that any output from the bootstrap replications be displayed. This
option produces an effect only if the bootstrap option is specified.

dots requests that a dot be placed on the screen at the beginning of each bootstrap
replication. This option produces an effect only if the bootstrap option is specified.

5.3 Options for attnd and attnw

pscore(scorevar) specifies the name of the user-provided variable containing the es-
timated propensity score; if this option is not specified, attnd and attnw will estimate
the propensity score with the specification provided in varlist using a probit.

logit allows a logit estimation of the propensity score instead of the default probit
model when the option pscore(scorevar) is not specified by the user.

index requires the use of the linear index as the propensity score when the option
pscore(scorevar) is not specified by the user.

5.4 Options for attr

pscore(scorevar) specifies the name of the user-provided variable containing the esti-
mated propensity score; if this option is not specified, attr will estimate the propensity
score with the specification provided in varlist using a probit.

logit allows a logit estimation of the propensity score instead of the default probit
model when the option pscore(scorevar) is not specified by the user.

index requires the use of the linear index as the propensity score when the option
pscore(scorevar) is not specified by the user.

radius(#) specifies the size of the radius. The default is 0.1.

5.5 Options for attk

pscore(scorevar) specifies the name of the user-provided variable containing the esti-
mated propensity score; if this option is not specified, attk will estimate the propensity
score with the specification provided in varlist using a probit.
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logit allows a logit estimation of the propensity score instead of the default probit
model when the option pscore(scorevar) is not specified by the user.

index requires the use of the linear index as the propensity score when the option
pscore(scorevar) is not specified by the user.

epan specifies that the Epanechnikov kernel be used by kernel rather than the default
Gaussian one.

bwidth(#) specifies the bandwidth to be used when choosing the epan option. Default
is 0.06. This option produces an effect only if the Epanechnikov kernel is requested.

5.6 Options for atts

pscore(scorevar) is a compulsory option which specifies the name of the user-provided
variable containing the estimated propensity score.

blockid(blockvar) is a compulsory option and specifies the name of the user-provided
variable containing the block identifier of the estimated propensity score.

6 Example: NSW - PSID data

We use data from Dehejia and Wahba (1999), DW for short, which is based on Lalonde’s
(1986) seminal study on the comparison between experimental and non-experimental
methods for the evaluation of causal effects. The data combine the treated units from
a randomized evaluation of the National Supported Work (NSW) demonstration with
nonexperimental comparison units drawn from survey data. For the purpose of this
section, we restrict our analysis to the so-called NSW-PSID-1 subsample, consisting
of the male NSW treatment units and the largest of the three PSID subsamples (see
DW99 for more detail). We use this dataset for two reasons: first, it is widely known in
labor economics (starting with Lalonde, 1986, re-analysed by Dehejia and Wahba, 1999
and 2002, and by Smith and Todd, 2003) to illustrate the working of propensity score
and matching techniques. Second, the data are publicly available at Rajeev Dehejia’s
website under the following address: http://www.columbia.edu/˜rd247/nswdata.html.
We tried to replicate the results produced by Dehejia and Wahba (1999) but - similar
to Smith and Todd (2003) - have not been able to numerically replicate all of their
estimates because of lack of detailed information in some crucial instances (e.g. num-
ber of blocks used in stratification, significance levels, exact procedure for testing the
balancing property). However, we get qualitatively similar results. The outcome of
interest is RE78 (real earnings in 1978); the treatment T is participation in the NSW
treatment group. Control variables are age, education, Black (1 if black, 0 otherwise),
Hispanic (1 if Hispanic, 0 otherwise), married (1 if married, 0 otherwise), nodegree (1
if no degree, 0 otherwise), RE75 (earnings in 1975), and RE74 (earnings in 1974). The
treatment group contains 185 observations, the control group 2490 observations, so the
total number of observations is 2675.
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6.1 Output from pscore

The output from running pscore using the DW99 specification is as follows:67

. pscore T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752 blackU74
> , pscore(mypscore) blockid(myblock) comsup numblo(5) level(0.005) logit;

****************************************************
Algorithm to estimate the propensity score
****************************************************

The treatment is T

T Freq. Percent Cum.

0 2490 93.08 93.08
1 185 6.92 100.00

Total 2675 100.00

Estimation of the propensity score

Iteration 0: log likelihood = -672.64954
(output omitted )

Iteration 9: log likelihood = -204.97537

Logit estimates Number of obs = 2675
LR chi2(12) = 935.35
Prob > chi2 = 0.0000

Log likelihood = -204.97537 Pseudo R2 = 0.6953

T Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .3316904 .1203295 2.76 0.006 .0958489 .5675318
age2 -.0063668 .0018554 -3.43 0.001 -.0100033 -.0027303
educ .8492683 .3477041 2.44 0.015 .1677807 1.530756
educ2 -.0506202 .0172492 -2.93 0.003 -.084428 -.0168124
marr -1.885542 .2993282 -6.30 0.000 -2.472214 -1.298869
black 1.135973 .3517793 3.23 0.001 .446498 1.825447
hisp 1.96902 .5668567 3.47 0.001 .8580017 3.080039
RE74 -.0001059 .0000353 -3.00 0.003 -.000175 -.0000368
RE75 -.0002169 .0000414 -5.24 0.000 -.000298 -.0001357
RE742 2.39e-09 6.43e-10 3.72 0.000 1.13e-09 3.65e-09
RE752 1.36e-10 6.55e-10 0.21 0.836 -1.15e-09 1.42e-09

blackU74 2.144129 .4268089 5.02 0.000 1.307599 2.980659
_cons -7.474742 2.443502 -3.06 0.002 -12.26392 -2.685566

note: 22 failures and 0 successes completely determined.

Note: the common support option has been selected
The region of common support is [.00061067, .9752541]

Description of the estimated propensity score
in region of common support

6educ2 denotes squared education, RE742 and RE752 denote the square of RE74 and RE75, respec-
tively, and blackU74 is the interaction of black and a dummy for non-employment (i.e. zero earnings)
in 1974

7Note that when specifying the detail option, (even) more detailed output is displayed documenting
the steps performed to obtain the final results.
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Estimated propensity score

Percentiles Smallest
1% .0006426 .0006107
5% .0008025 .0006149
10% .0010932 .0006159 Obs 1342
25% .0023546 .000618 Sum of Wgt. 1342

50% .0106667 Mean .1377463
Largest Std. Dev. .2746627

75% .0757115 .974804
90% .6250823 .9749805 Variance .0754396
95% .949302 .9752244 Skewness 2.185182
99% .970598 .9752541 Kurtosis 6.360726

******************************************************
Step 1: Identification of the optimal number of blocks
Use option detail if you want more detailed output
******************************************************

The final number of blocks is 7

This number of blocks ensures that the mean propensity score
is not different for treated and controls in each blocks

Following the algorithm described in Section 2, blocks for which the average propen-
sity scores of treated and controls differ are split in half. The algorithm continues until,
in all blocks, the average propensity score of treated and controls does not differ. In
our case, this happens for a number of seven blocks. Thereafter pscore proceeds to the
test of the balancing property for each covariate.

**********************************************************
Step 2: Test of balancing property of the propensity score
Use option detail if you want more detailed output
**********************************************************

The balancing property is satisfied

When the detail option is not specified, the only output produced by pscore is
a statement saying whether the balancing property is satisfied (which is the case for
the DW data with p=0.005) or not. In the latter case the user is informed for which
variable(s) in which block(s) the balancing property failed and a message is issued
suggesting to try a different specification of the propensity score.

In case the balancing property holds, the final distribution of treated and controls
across blocks is tabulated together with the inferior of each block:

This table shows the inferior bound, the number of treated
and the number of controls for each block

Inferior
of block T

of pscore 0 1 Total

.0006107 924 7 931
.05 102 4 106
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.1 56 7 63

.2 41 28 69

.4 14 21 35

.6 13 20 33

.8 7 98 105

Total 1157 185 1342

Note: the common support option has been selected

*******************************************
End of the algorithm to estimate the pscore
*******************************************

Note that we imposed the common support condition in this example using the
comsup option. Consequently, block identifiers are missing for control observations
outside the common support and the number of observations in the table is 1342 instead
of 2675.

After running pscore, users can proceed to estimate average treatment effects using
one of the att* programs.

6.2 Output from attnd and attnw

The typical output from attnd or attnw8 is

. attnd RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752 blackU
> 74, comsup boot reps(100) dots logit;

The program is searching the nearest neighbor of each treated unit.
This operation may take a while.

ATT estimation with Nearest Neighbor Matching method
(random draw version)
Analytical standard errors

n. treat. n. contr. ATT Std. Err. t

185 57 1667.644 2113.592 0.789

Note: the numbers of treated and controls refer to actual
nearest neighbour matches

Bootstrapping of standard errors

command: attnd RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 R
> E752 blackU74 , pscore() logit comsup
statistic: r(attnd)
(obs=2675)
...............................................................................
> .....................

8Remember that attnd and attnw will generally give the same results (except for bootstrapped
standard errors) unless there are only discrete covariates and multiple nearest neighbors. This is not
the case in our example, and therefore to save space we report here only the output of attnd.
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Bootstrap statistics

Variable Reps Observed Bias Std. Err. [95% Conf. Interval]

bs1 100 1667.644 -85.68572 1211.026 -735.2937 4070.582 (N)
-839.9554 3643.178 (P)
-394.5013 4064.472 (BC)

N = normal, P = percentile, BC = bias-corrected

ATT estimation with Nearest Neighbor Matching method
(random draw version)
Bootstrapped standard errors

n. treat. n. contr. ATT Std. Err. t

185 57 1667.644 1211.026 1.377

Note: the numbers of treated and controls refer to actual
nearest neighbour matches

Note that in this example, only 57 different controls have been matched to the 185
treated. These results are very close to the ones obtained by Dehejia and Wahba (1999).

6.3 Output from attr

For attr with radius r = 0.0001 we obtain

. attr RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752 blackU7
> 4, comsup boot reps(100) dots logit radius(0.0001);

The program is searching for matches of treated units within radius.
This operation may take a while.

ATT estimation with the Radius Matching method
Analytical standard errors

n. treat. n. contr. ATT Std. Err. t

23 66 -5546.140 2388.723 -2.322

Note: the numbers of treated and controls refer to actual
matches within radius

Bootstrapping of standard errors

command: attr RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE
> 752 blackU74 , pscore() logit comsup radius(.0001)
statistic: r(attr)
(obs=2675)
...............................................................................
> .....................

Bootstrap statistics

Variable Reps Observed Bias Std. Err. [95% Conf. Interval]
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bs1 100 -5546.14 425.988 4657.081 -14786.8 3694.519 (N)
-13867.87 5668.455 (P)
-13867.87 5668.455 (BC)

N = normal, P = percentile, BC = bias-corrected

ATT estimation with the Radius Matching method
Bootstrapped standard errors

n. treat. n. contr. ATT Std. Err. t

23 66 -5546.140 4657.081 -1.191

Note: the numbers of treated and controls refer to actual
matches within radius

The large difference with respect to the caliper matching results of Dehejia and
Wahba (2002) comes from the fact that caliper matching differs from radius matching
in that the nearest control is used as a match if a treated unit has no control units
within radius r. While caliper matching uses all treated units, our method only uses
those treated that have control matches within radius r (here, 23 out of 185 treated).
This example illustrates the sensitivity of the results to extreme assumptions used in
the matching procedure. If the radius is chosen to be very small, many treated units are
not matched and the results are no longer representative of the population of treated.
For a more detailed discussion of this issue see Smith and Todd (2003).

6.4 Output from attk

For attk the results are as follows:9

. attk RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752 blackU7
> 4, comsup boot reps(100) dots logit;

The program is searching for matches of each treated unit.
This operation may take a while.

ATT estimation with the Kernel Matching method

n. treat. n. contr. ATT Std. Err. t

185 1157 1537.943 . .

Note: Analytical standard errors cannot be computed. Use
the bootstrap option to get bootstrapped standard errors.

Bootstrapping of standard errors

command: attk RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE
> 752 blackU74 , pscore() comsup logit bwidth(.06)
statistic: r(attk)

9Note that Dehejia and Wahba do not present results for kernel matching.
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(obs=2675)
...............................................................................
> .....................

Bootstrap statistics

Variable Reps Observed Bias Std. Err. [95% Conf. Interval]

bs1 100 1537.943 -51.50918 1016.874 -479.755 3555.642 (N)
-439.9654 3601.629 (P)
-343.8961 3826.322 (BC)

N = normal, P = percentile, BC = bias-corrected

ATT estimation with the Kernel Matching method
Bootstrapped standard errors

n. treat. n. contr. ATT Std. Err. t

185 1157 1537.943 1016.874 1.512

In kernel matching, all treated as well as all controls (in the common support which
has been imposed here) are used. The estimate of the ATT is quite close to the one
obtained with nearest neighbor matching.

6.5 Output from atts

Finally, for atts with the blocks obtained in pscore:10

. atts RE78 T, pscore(mypscore) blockid(myblock) comsup boot reps(100) dots;

ATT estimation with the Stratification method
Analytical standard errors

n. treat. n. contr. ATT Std. Err. t

185 1157 2208.600 777.866 2.839

Bootstrapping of standard errors

command: atts RE78 T , pscore(mypscore) blockid(myblock) comsup
statistic: r(atts)
(obs=2675)
...............................................................................
> .....................

10Note that there are two special cases as concerns the computation of the ATT and its analytical
standard error. First, if there is no treated and/or no control unit in one (or more) of the blocks,
the ATT is computed on the remaining blocks which practically amounts to imposing a (block-based)
common support condition. Second, if there is exactly one treated and/or one control in one (or more)
of the blocks, the ATT in that block can still be computed but the standard error cannot. In this case,
atts will produce missing values for the standard error. However, bootstrapped standard errors can
still be computed.
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Bootstrap statistics

Variable Reps Observed Bias Std. Err. [95% Conf. Interval]

bs1 100 2208.6 96.6845 850.9957 520.0395 3897.16 (N)
570.5178 4012.478 (P)
778.2358 4184.918 (BC)

N = normal, P = percentile, BC = bias-corrected

ATT estimation with the Stratification method
Bootstrapped standard errors

n. treat. n. contr. ATT Std. Err. t

185 1157 2208.600 850.996 2.595

Here, the difference with respect to the DW99 results is slightly bigger than for
nearest neighbor matching. This might be explained by a different number of blocks
used in stratification, different significance levels, or a different procedure for testing the
balancing property (see general remark at the beginning of the section 6). But overall,
the results obtained by attnw, attk, and atts are quite close to each other, and taken
together give evidence of a positive ATT in the range of 1500-2200 $ associated with the
NSW demonstration (when evaluated with non-experiental comparison groups) which
is close to the experimental estimates of about 1700 $.

7 Saved Results

The the att* commands save in r()

Scalars
r(nt*) number of treated used in the

computation of att*
r(nc*) number of controls used in the

computation of att*
r(att*) ATT obtained by att*
r(seatt*) analytical s.e. for att*
r(tsatt*) analytical t-stat for att*
r(bseatt*) bootstrapped s.e. for att*
r(btsatt*) bootstrapped t-stat. for att*

r(mean1) mean outcome of matched
treated for attk

r(mean0) mean outcome of matched con-
trols for attk
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