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Abstract

This course is an introduction to some conventional and unconventional methods for
the identification and estimation of the causal effect of a “treatment” on an “outcome”.
The relationship between educational choices and labor market outcomes will offer
the main source of examples and applications, but, occasionally, also other fields in
economics as well as medical sciences will be considered.
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1 The Problem of Causality

1.1 Motivation

Consider the following questions.

• Medical therapies: how can we establish whether a drug is effective?

• Fitness: does exercising improve health? For everybody? Only for the
(healthy) persons who do it?

• College education: does college increase your future earnings? Does
college add anything to your innate abilities? Can we estimate in general

the returns to schooling? For which group in the population?

• Labor market programs: does training increase the employment

probability of jobless workers? Do work incentives for single mothers

with children increase labor force participation?

• Army: does the military service increase or reduce earning and employ-

ment probabilities? Health? Life expectancy?

• Educational policies: can the offer of students’ loans increase college

education and earnings of poor highschool graduates?

The main goal of this course is to attract your attention to the problem of

causality highlighted by these examples. This problem is evidently crucial

for economic analysis.

We analyze this problem by focusing mainly on applications concerning ed-

ucation and the labor market, but the issue is more general and should be

interesting for all economists independently of their field.

The outline of the course is described in the Contents.
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1.2 A formal framework to think about causality

We have a population of individuals; for each individual we observe a variable
D and a variable Y .

We observe that D and Y are correlated. Does correlation imply causation?

In general no, and we would like to understand in which sense and under
which hypotheses one can conclude from the evidence that D causes Y .

It is useful to think at this problem using the terminology of experimental
analysis.

• i is an index for the individuals in the population;

• Di is the treatment, the potential cause of which we want to estimate

the effects:

Di = 1 if individual i has been exposed to treatment;

Di = 0 if individual i has not been exposed to treatment.

• Yi(Di) is the outcome, the effect that we want to attribute to the treat-

ment; the notation indicates that it (may) depend on Di

Yi(1) is the outcome in case of treatment;

Yi(0) is the outcome in case of no treatment;

• Note that the outcome for each individual can be written as:

Yi(Di) = DiYi(1) + (1 − Di)Yi(0) (1)

This approach requires to think in terms of “counterfactuals”.

2



Examples ...

• Medical therapy: population = cancer patients; D = therapy given

by the doctor to the patient; Y = life or death, tumoral mass.

We can run controlled experiments, but ethical issues often restrict the
range of feasible experiments.

• College: population = highschool graduates; D = attending a college;

Y = earnings, time to find a job.

Typically, to study the causal effect of education we do not have data

from controlled experiments and we have to rely on observational data.

• Labor market programs: ...

• Army: ...

• Student loans: ...

3



1.3 The fundamental problem of causal inference

Within this formal framework we can define the causality link in the following
way.

Definition 1 For every individual i

The event {Di = 1 instead of Di = 0} causes the effect ∆i = Yi(1)−Yi(0)

Given this (reasonable) definition, we would like to:

• establish whether the above causality link exists for an individual i;

• measure the dimension of the effect of Di on Yi.

It seems impossible to reach these goals because of the following proposition:

Proposition 1 Fundamental Problem of Causal Inference.

It is impossible to observe for the same individual i the values Di = 1 and
Di = 0 as well as the values Yi(1) and Yi(0) and, therefore, it is impossible

to observe the effect of D on Y for individual i (Holland, 1986).

Another way to express this problem is to say that we cannot infer the effect

of treatment because we do not have the counterfactual evidence i.e. what
would have happened in the absence of treatment.
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There are two classes of solutions to the Fundamental Problem of Causal

Inference:

i. The scientific solution.

Exploits various homogeneity and invariance assumptions to construct
experiments on the causality link.

ii. The statistical solution.

Approaches the problem by aiming at the identification of “average

causal effects”.

Within each of these solutions, different hypotheses lead to different inter-
pretations of the causality link.

In our research we often assume specific interpretations of the causality link

without paying sufficient attention to the hypotheses that are required for
the validity of these interpretations.
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1.4 The scientific solution

Consider the following assumptions

i. There is one i: a physical device, (e.g. an electric circuit);

ii. Temporal stability: the value of Yi does not depend on when the sequence
“apply D = 1 to i and then measure Yi” takes place;

iii. Causal transience: the value of Yi is not affected by the previous exposure
of i to the above experimental sequence

iv. Unit Homogeneity: there exist other units j 6= i such that Yi(Di) =
Yj(Dj) for Di = Dj

These are the assumptions behind scientific inference, but sometime also

behind inference in our daily life. Examples ...

What is their relevance for economic analysis?
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1.5 The statistical solution

Given that the causal effect for a single individual i cannot be observed, the
statistical solution proposes methods to compute the average causal effect for

the entire population or for some interesting sub-groups.

1.5.1 The effect of treatment on a random individual

Suppose you pick a person at random in the population and you expose

him/her to treatment. What is the expected effect on the outcome for this

person?

Formally this is given by:

E{∆i} = E{Yi(1) − Yi(0)} (2)

= E{Yi(1)} − E{Yi(0)}

Apparently we are not making progress, because we cannot observe the out-

come in both counterfactual situations for all the individuals and therefore
we cannot compute the expectations on the right-hand side.

Furthermore, the effect of treatment on a random person may not be an

interesting treatment effect from the viewpoint of an economist.
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1.5.2 The effect of treatment on the treated

This second type of average effect is often more interesting for economists.

Let’s consider only the sub-population of those who are actually treated.
What is the average treatement effect for these persons?

It is the difference between the average outcome in case of treatment (which

we observe) minus the average outcome in the counterfactual situation of

no-treatment (which we do not observe). Formally:

E{∆i | Di = 1} = E{Yi(1) − Yi(0) | Di = 1} (3)

= E{Yi(1) | Di = 1} − E{Yi(0) | Di = 1}

Why should the effect of treatment on the treated be more interesting for
economists than the effect of treatment on a random person?

However, the problem is that both these average treatment effects cannot be

easily identified and estimated with observational data.

Randomized experiments offer a way to solve the problem.
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1.5.3 Randomized experiments

Suppose that you can extract two random samples C and T from the popu-
lation. Since by construction these samples are statistically identical to the

entire population we can write:

E{Yi(0)|i ∈ C} = E{Yi(0)|i ∈ T} = E{Yi(0)} (4)

and

E{Yi(1)|i ∈ C} = E{Yi(1)|i ∈ T} = E{Yi(1)}. (5)

Then substituting 4 and 5 in 2 it is immediate to obtain:

E{∆i} ≡ E{Yi(1)} − E{Yi(0)} (6)

= E{Yi(1)|i ∈ T} − E{Yi(0)|i ∈ C}.

In this way we can solve the Fundamental Problem of Causal Inference be-

cause we use the sample C (the controls) as an image of what would happen
to the sample T (the treated) in the counterfactual situation of no treatment,

and vice-versa.

LaLonde (1986) gives a provocative description of the mistakes that a re-

searcher can make using observational data instead of experimental data.
We will repeatedly look at his results during the course.

However, randomized experiments are rarely a feasible solution for economists:

• ethical concerns;

• technical implementation;

In the rest of the course we will study different conventional and non-conventional

alternatives to randomized experiments.
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2 Conventional methods to estimate causal effects

This part of the course is devoted to conventional methods.

The goal is to explore in a deeper way the econometric problems raised by

the identification and estimation of treatment effects.

We will consider the problems raised by:

• OLS estimation;

• IV estimation;

• Heckman “two stages” estimation;

10



2.1 Specification of the outcomes

Going back to the notation of Section 1, consider the following specification
of outcomes, with or without treatment:

Yi(1) = µ(1) + Ui(1) (7)

Yi(0) = µ(0) + Ui(0)

where E{Ui(1)} = E{Ui(0)} = 0. The causal effect of treatment for an
individual is

∆i = Yi(1) − Yi(0) (8)

= [µ(1) − µ(0] + [Ui(1) − Ui(0)]

= E{∆i} + [Ui(1) − Ui(0)].

It is the sum of:

E{∆i} = µ(1) − µ(0):
the common gain from treatment equal for every individual i;

[Ui(1) − Ui(0)]:

the idiosyncratic gain from treatment that differs for each individual i

and that may or may not be observed by the individual.

(Figure: Differences between treated and control individuals.)

Let Di indicate treatment: using equation 1 the outcome can be written as:

Yi = µ(0) + [µ(1) − µ(0) + Ui(1) − Ui(0)]Di + Ui(0) (9)

= µ(0) + ∆iDi + Ui(0)

where Di = 1 in case of treatment and Di = 0 otherwise.

This is a linear regression with a random coefficient on the RHS variable Di.
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2.2 Specification of the selection into treatment

The model is completed by the specification of the rule that determines the
participation of individuals into treatment:

D∗
i = α + βZi + Vi (10)

where E{Vi} = 0 and

Di =





1 if D∗
i ≥ 0

0 if D∗
i < 0

(11)

D∗
i is the (unobservable) criterion followed by the appropriate decision maker

concerning the participation into treatment of individual i. The decision
maker could be nature, the researcher or the individual.

Zi is the set of variables that (linearly) determine the value of the criterion and

therefore the participation status. No randomness of coefficients is assumed

here.

Zi could be a binary variable.

12



2.3 The model in compact form

Yi = µ(0) + ∆iDi + Ui(0) (12)

D∗
i = α + βZi + Vi (13)

Di =





1 if D∗
i ≥ 0

0 if D∗
i < 0



 (14)

∆i = µ(1) − µ(0) + Ui(1) − Ui(0) (15)

= E{∆i} + Ui(1) − Ui(0)

E{Ui(1)} = E{Ui(0)} = E{Vi} = 0 (16)

Correlation between Ui and Vi is possible.

Examples:

• Cancer

• Education

• Training

• ...

We will first define the statistical effects of treatment in this model, and then
we will discuss the identification and estimation problems.
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2.4 The statistical effects of treatment in this model

Within this model the statistical effects of treatment considered by the con-
ventional analysis are given by the following equations:

i. The effect of treatment on a random individual.

E{∆i) = E{Yi(1) − Yi(0)} (17)

= E{Yi(1)} − E{Yi(0)}
= µ(1) − µ(0)

ii. The effect of treatment on the treated

E{∆i | Di = 1) = E{Yi(1) − Yi(0) | Di = 1} (18)

= E{Yi(1) | Di = 1} − E{Yi(0) | Di = 1}
= µ(1) − µ(0) + E{Ui(1) − Ui(0) | Di = 1}

The two effects differ because of the term

E{Ui(1) − Ui(0) | Di = 1} (19)

that represents the average idiosyncratic gain for the treated. This is the
average gain that those who are treated obtain on top of the average gain for

a random person in the population.
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When these two treatment effects are equal?

i. When the idiosyncratic gain is zero for every individual:

Ui(1) = Ui(0) ∀i (20)

In this case, the model has constant coefficients because

∆i = E{∆i} = µ(1) − µ(0) ∀i. (21)

Therefore, we are assuming that the effect of treatment is identical for all

individuals. And in particular for both a treated and a random person.

ii. When the average idiosyncratic gain for the treated is equal to zero:

E{Ui(1) − Ui(0) | Di = 1} = E{Ui(1) − Ui(0)} = 0 (22)

In this case treatment is random and in particular is independent of

the idiosyncratic gain. Therefore the average idiosyncratic gain for the

treated is equal to the average idiosyncratic gain in the population that

is equal to zero.

Examples:

• Cancer

• Education

• Training

• ...
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2.5 Problems with OLS estimation

2.5.1 Bias for the effect of treatment on a random person

Using 15 we can rewrite equation 12 as:

Yi = µ(0) + E{∆i}Di + Ui(0) + Di[Ui(1) − Ui(0)] (23)

= µ(0) + E{∆i}Di + εi

that tells us what we get from the regression of Yi on Di.

Problem:
E{εiDi} = E{Ui(1) | Di = 1}Pr{Di = 1} 6= 0 (24)

Therefore the estimated coefficient of Yi on Di is a biased estimate of E{∆i}

E{Yi | Di = 1} − E{Yi | Di = 0} = E{∆i}+ (25)

E{Ui(1) − Ui(0) | Di = 1} + E{Ui(0) | Di = 1} − E{Ui(0) | Di = 0}

The second line in 25 represents the OLS regression bias if we want to estimate
the effect of treatment on a random person.

16



Readjusting the second line of 25, the bias in the estimation of E{∆i} can

be written in the following form:

E{Yi | Di = 1} − E{Yi | Di = 0} = E{∆i}+ (26)

E{Ui(1) | Di = 1} − E{Ui(0) | Di = 0}
This bias is equal to the difference between two componenents:

• E{Ui(1) | Di = 1}
the unobservable outcome of the treated in case of treatment;

• E{Ui(0) | Di = 0}
the unobservable outcome of the controls in the case of no treatment.

In general, there is no reason to expect this difference to be equal to zero.

Consider a controlled experiment in which participation into treatment is

random because

• assignment to the treatment or control groups is random and

• there is full compliance with the assignment.

Under these assumptions it follows that:

E{Ui(1)} = E{Ui(1) | Di = 1} = 0 (27)

E{Ui(0)} = E{Ui(0) | Di = 0} = 0

Hence, under perfect randomization, the treatment and the control groups
are statistically identical to the entire population and therefore

E{∆i} = E{Yi(1)} − E{Yi(0)} (28)

= E{Yi(1) | Di = 1} − E{Yi(0) | Di = 0}
= µ(1) − µ(0)

Examples:

• Cancer

But, is the effect of treatment on a random person interesting in economic

examples?

17



2.5.2 Bias for the effect of treatment on a treated person

Adding and subtracting DiE{Ui(1)−Ui(0) | Di = 1} in 23 and remembering
from 18 that E{∆i | Di = 1} = E{∆i} + E{Ui(1) − Ui(0) | Di = 1}, we can

rewrite 23 as:

Yi = µ(0) + E{∆i | Di = 1}Di + (29)

Ui(0) + Di[Ui(1) − Ui(0) − E{Ui(1) − Ui(0) | Di = 1}]
= µ(0) + E{∆i | Di = 1}Di + ηi

Using 29 we can define the OLS bias in the estimation of E{∆i | Di = 1}.
Note that this parameter is equal to the common effect plus the average

idiosyncratic gain.

However, also in this case the error term is correlated with the treatment

indicator Di:

E{ηiDi} = E{DiUi(0) + Di[Ui(1) − Ui(0) − E{Ui(1) − Ui(0) | Di = 1}]}
= E{DiUi(0)} 6= 0. (30)

and, therefore, the estimated coefficient of Yi on Di is biased also with respect

to E{∆i | Di = 1}:

E{Yi | Di = 1} − E{Yi | Di = 0} = E{∆i | Di = 1}+ (31)

E{Ui(0) | Di = 1} − E{Ui(0) | Di = 0}
The second line in 31 represents the OLS regression bias if we want to estimate

the effect of treatment on the treated.

18



The bias

E{Ui(0) | Di = 1} − E{Ui(0) | Di = 0}

is called mean selection bias and “tells us how the outcome in the base state

differs between program participants and non-participants. Absent any gen-

eral equilibrium effects of the program on non participants, such differences

cannot be attributed to the program.” (Heckman, 1997)

This bias is zero only when participants and non-participants are identical in

the base state i.e. when E{Ui(0)Di} = 0.

Would randomization help in the estimation of the effect of treatment on the

treated?

Examples:

• Cancer

• Education

• Training

• ...
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2.5.3 An important particular case: the Roy model

Consider the case in which the idiosyncratic gain from treatment exists and
is one of the determinants of the participation into treatment, so that:

Pr{Di = 1 | Ui(1) − Ui(0)} 6= Pr{Di = 1} or equiv. (32)

E{Di | Ui(1) − Ui(0)} 6= E{Di}

In this case by Bayes Law, denoting with f the density of Ui(1) − Ui(0) we
have that

f(Ui(1) − Ui(0) | Di = 1)Pr{Di = 1} = (33)

Pr{Di = 1 | Ui(1) − Ui(0)}f(Ui(1) − Ui(0))

Because of 32, from 33 descends that

f(Ui(1) − Ui(0) | Di = 1) 6= f(Ui(1) − Ui(0)) (34)

and therefore that

E{Ui(1) − Ui(0) | Di = 1} 6= E{(Ui(1) − Ui(0)} (35)

This equation implies that in this case:

• the effect of treatment on a random person is different from the effect of

treatment on the treated (see equation 22);

• OLS give seriously biased estimates of the effect on a random person

(see equation 25);

• OLS appear to be more promising for the estimation of the effect of

treatment on the treated, but the problem of the mean selection bias
remains to be solved (see equation 31).
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2.6 Conventional interpretation of Instrumental Variables

2.6.1 Assumptions for the IV estimation of the effect of treatment on a random
person

We want to estimate equation 23, which is reported here for conveniece

Yi = µ(0) + E{∆i}Di + εi.

Suppose that there exist a variable Z such that:

COV {Z, D} 6= 0 (36)

COV {Z, ε} = 0. (37)

If this variable exists then (see the Appendix 6.1):

E{∆i} =
COV {Y, Z}
COV {D, Z}

. (38)

Substituting the appropriate sample covariances on the LHS of 38 we get a

consistent estimate of E{∆i}.

It is however crucial to understand what the two conditions 36 and 37 require

in terms of our model.
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The first condition that the instrument Z has to satisfy is:

Pr{Di = 1 | Zi = 1} 6= Pr{Di = 1 | Zi = 0} (39)

This condition can be easily tested by estimating the participation equation

13 and checking that Zi is a significant predictor of Di.

Note that to do so we do not have to make functional assumptions on the

error term Vi in the participation equation 13 (in contrast with the Heckman
two step procedure that we will consider later).

The second condition is more problematic:

E{εi | Zi} = E{Ui(0) + Di[Ui(1) − Ui(0)] | Zi} = 0 (40)

This (just-identifying) condition cannot be tested.
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Note that it contains two requirements:

i. The instrument must be uncorrelated with the unobservable outcome in

the base state; i.e. knowing the value of the instrument should not help

to predict the outcome in the base state.

E{Ui(0) | Zi} = 0 = E{Ui(0)} (41)

ii. Conditioning on the instrument, the idiosyncratic gain must be uncor-

related with the treatment

E{Di[Ui(1) − Ui(0)] | Zi} = E{Ui(1) − Ui(0) | Zi, Di = 1}Pr{Di = 1 | Zi}
= 0 = E{Ui(1) − Ui(0)} (42)

For example, in the case of the Vietnam war lottery for the earning effect

of the military service (Angrist, 1990), this condition requires that:

• the average gain of those who are not drafted and go and the average

gain of those who are drafted and go must both be equal to the

average gain of the entire population, which is equal to 0.

Other examples:

• Parental background for returns to schooling (Willis-Rosen, 1979).

• Quarter of birth for returns to schooling (Angrist and Krueger, 1994).

• Nearby college for returns to schooling (Card, 1995b)

• WWII for returns to schooling (Ichino and Winter-Ebmer, 1998)

• A random indicator of assignment to treatment.

It seems that if we really want to estimate the effect on a random person and

there exists relevant idiosyncratic gains, we better go for randomization in a
controlled experiment.
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2.6.2 Assumptions for the IV estimation of the effect of treatment on a treated
person

We want now to estimate equation 29, which is reported here for convenience

Yi = µ(0) + E{∆i | Di = 1}Di + ηi.

We assume again that there exist a variable Z such that the two conditions

36 and 37 hold in this case:

COV {Z, D} 6= 0 (43)

COV {Z, η} = 0. (44)

If this variable exists then (see the Appendix 6.1):

E{∆i | Di = 1} =
COV {Y, Z}
COV {D, Z}

. (45)

Substituting the appropriate sample covariances on the LHS of 45 we get a

consistent estimate of E{∆i | Di = 1}.

Also in this case it is crucial to understand what the two conditions 36 and

37 require in terms of our model.
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The first condition that the instrument Z has to satisfy is equal to the one

that was needed for the IV estimation of the effect on a random person:

E{Di | Zi} = Pr{Di = 1 | Zi} 6= 0 (46)

This condition can be easily tested by estimating the participation equation

13 and checking that Zi is a significant predictor of Di.

Note again that to do so we do not have to make functional assumptions on

the error term Vi in the participation equation 13 (in contrast with Heckman
procedure that we will consider later).

The second condition is different but still problematic:

E{η | Z} = E{Ui(0)+Di[Ui(1)−Ui(0)−E{Ui(1)−Ui(0) | Di = 1}] | Zi} = 0
(47)

25



There are again two requirements:

i. The instrument must be uncorrelated with the unobservable outcome in
the base state; i.e. knowing the value of the instrument should not help

predicting the outcome in the base state (like in the previous case).

E{Ui(0) | Zi} = 0 = E{Ui(0)} (48)

ii. The average idiosyncratic gain for the treated conditioning on the in-

strument, should be identical to the unconditional average idiosyncratic

gain for the treated

E{Ui(1) − Ui(0) | Zi, Di = 1} = E{Ui(1) − Ui(0) | Di = 1} (49)

Using again the example of the Vietnam war lottery for the earning effect

of the military service (Angrist, 1990), this condition requires that:

• the average gain of those who are not drafted and go and the average

gain of those who are drafted and go must both be equal to the
average gain of all those who go (i.e. the average gain of those who

go is independent of the draft).

Keep in mind this condition because it will be crucial in the comparison

between the Heckman (1997) interpretation of IV an the AIR interpre-

tation of IV.

Other examples:

• Parental background for returns to schooling (Willis-Rosen, 1979).

• Quarter of birth for returns to schooling (Angrist and Krueger, 1994).

• Nearby college for returns to schooling (Card, 1995b)

• WWII for returns to schooling (Ichino and Winter-Ebmer, 1998)

• A random indicator of assignment to treatment.
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2.6.3 Comments

Even if we are interested only in the effect of treatment on the treated and
not in the effect of treatment on a random person, the IV estimation seems

problematic.

Note that randomization does not solve the problem in the presence of non-

compliance with the assignment.

Furthermore, it seems possible that using IV the estimated effect of treatment
on the treated differs at different values of the instrument or for different

instruments, in which case condition 49 would not be satisfied.

This intuition leads to the concept of Local Average Treatment Effect esti-

mation on which we will focus later.

But first we look at another conventional approach to the estimation of treat-

ment effects which applies to models with fixed coefficients.
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2.7 Heckman procedure for endogenous dummy variable models

2.7.1 The basic model

Consider the case in which Ui(1) = Ui(0) (no idiosyncratic gain from treat-
ment) and let ∆ = µ(1) − µ(0). Allow for the explicit consideration of co-

variates Xi Our model (see equation 12) simplifies to the following common

coefficients model:

Yi = µ(0) + γXi + ∆Di + Ui(0)

Yi = µ + γXi + ∆Di + Ui (50)

D∗
i = α + βZi + Vi (51)

Di =





1 if D∗
i ≥ 0

0 if D∗
i < 0



 (52)

where E{Ui} = E{Vi} = 0 but COV{Ui, Vi} 6= 0 so that E{DiUi} 6= 0

and the OLS estimation of 50 is inconsistent. We will later make functional

assumptions on these error terms.

This model is commonly called the endogenous dummy variable model (see

Heckman (1978) and Maddala (1983). The OLS bias comes, for example,

from the fact that those who have on average higher unobservable outcomes
may also be more likely to enter into treatment (or viceversa).

Examples:

• Roy model (Roy, 1951).

• Parental background for returns to schooling (Willis-Rosen, 1979).

• Effects on unions on wages (Robinson, 1989)

• Wage equation for female workers (Heckman, 1978)

• ...
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2.7.2 The model rewritten as a switching regression model

We can rewrite the model in the following way:

Regime 1: if D∗
i ≥ 0 Yi = µ + γXi + ∆ + Ui (53)

Regime 0: if D∗
i < 0 Yi = µ + γXi + Ui (54)

or equivalently

Regime 1: if Vi ≥ −α − βZi Yi = µ + γXi + ∆ + Ui (55)

Regime 0: if Vi < −α − βZi Yi = µ + γXi + Ui (56)

Note that Regime 1 implies treatment. This is an endogenous switching

regression model in which the intercept differs under the two regimes. More

generally we could allow also the coefficient γ to differ in the two regimes.

It would seem feasible to estimate separately the above two equations on the

two sub-samples that correspond to each regime and to recover an estimate

of ∆ from the difference between the two estimated constant terms.

However, if COV{Ui, Vi} 6= 0 the error terms Ui do not have zero mean within

each regime.

Regime 1: E{Ui | Vi ≥ −α − βZi} 6= E{Ui} = 0 (57)

Regime 0: E{Ui | Vi < −α − βZi} 6= E{Ui} = 0 (58)

The selection bias takes the form of an omitted variable specification error

such that the error term in each regime does not have zero mean. If we could

observe the two espectations in 57 and 58, we could include them in the two
regressions and avoid the misspecification.
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2.7.3 Some useful results on truncated normal distributions

Assume that U and V are jointly normally distributed with zero means,
standard deviations respectively equal to σU and σV and with covariance

equal to σUV . Denote with φ(.) the standard normal density and with Φ(.)

the standard normal cumulative distribution.

The following results can be easily proved (see Appendix in Maddala, 1983).

E

{
U

σU
| U

σU
> k1

}
=

φ(k1)

1 − Φ(k1)
(59)

E

{
U

σU
| U

σU
< k2

}
= −φ(k2)

Φ(k2)
(60)

E

{
U

σU
| k1 <

U

σU
< k2

}
=

φ(k1) − φ(k2)

Φ(k2) − Φ(k1)
(61)

and similarly for V . The ratios between the normal density and its cumulative

on the RHS are called Inverse Mill’s ratios.

E

{
U

σU
| V

σV
> k

}
= σUV E

{
V

σV
| V

σV
> k

}
(62)

= σUV
φ(k)

1 − Φ(k)

E

{
U

σU
|

V

σV
< k

}
= σUV E

{
V

σV
|

V

σV
< k

}
(63)

= −σUV
φ(k)

Φ(k)
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2.7.4 The Heckman two-steps procedure

We cannot observe E{Ui | Vi ≥ −α − βZi} and E{Ui | Vi < −α − βZi} but
we can estimate them using the participation equation 51 and assuming joint

normality for Ui and Vi.

Without loss of generality we can assume σV = 1 (this parameter is anyway
not identified in a probit model). The steps of the procedure are as follows

i. Estimate a probit model for the participation into treatment using 51,

and retrieve the (consistently) estimated absolute values of the Inverse

Mill’s Ratios

M1i =
φ(−α̂ − β̂Zi)

1 − Φ(−α̂ − β̂Zi)
=

φ(α̂ + β̂Zi)

Φ(α̂ + β̂Zi)
(64)

M0i =
φ(−α̂ − β̂Zi)

Φ(−α̂ − β̂Zi)
=

φ(α̂ + β̂Zi)

1 − Φ(α̂ + β̂Zi)
(65)

where α̂ and β̂ are the estimated probit coefficients.

ii. Estimate using OLS the equations for the two regimes augmented with

the appropriate Inverse Mill’s Ratios obtained in the first step

Regime 1: Yi = µ + γXi + ∆ + λ1M1i + νi (66)

Regime 0: Yi = µ + γXi + λ0M0i + νi (67)

where λ1 = σUσUV , λ0 = −σUσUV and E{νi} = 0 since the Inverse

Mill’s ratios have been consistently estimated.

iii. Get a consistent estimate of the treatment effect ∆ by subtracting the

estimated constant in 67 from the estimated constant in 66.
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2.7.5 Comments

• Note that λ̂1 is a consistent estimate of σUσUV while λ̂0 is a consistent
estimate of −σUσUV . Full maximum likelihood estimation, instead of

the two step procedure described above is, possible (and is provided by

most of the available software packages).

• Therefore, if the error terms are positively correlated (i.e. those who

tend to have higher outcomes are also more likely to participate into

treatement) we should expect a positive coefficient on the Inverse Mill’s
ratio in Regime 1 and a negative coefficient in Regime 0.

• If the coefficients on the Inverse Mill’s Ratios λ̂1 and λ̂0 are not signif-
icantly different form zero, this indicates that there is no endogenous

selection in the two regimes. So this procedure provides a test for the

existence of endogenous selection.

• Suppose that Zi = Xi, i.e. there is no exogenous variable which de-

termines the selection into treatment and which is excluded from the
outcome equation. In this case you could still run the procedure and get

estimates of λ0 and λ1. But the identification would come only from the

distributional assumptions. Only because of these assumptions the In-
verse Mill’s ratios would be a non-linear transformation of the regressors

Xi in the outcome equations.

• Therefore this procedure does not avoid the problem of finding a good

instrument. And if we had one then using IV we could obtain estimates

of treatment effects without making unnecessary distributional assump-

tions.

• How is the Heckman method performing according to LaLonde’s (1986)

results?
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3 The Angrist-Imbens-Rubin approach for the estima-

tion of causal effects

3.1 Notation

Consider the following framework:

• N individuals denoted by i.

• They are subject to two possible levels of treatment: Di = 0 and Di = 1.

• Yi is a measure of the outcome.

• Zi is a binary indicator that denotes the assignment to treatment; it is

crucial to observe that:

i. assignment to treatement may or may not be random;

ii. the correspondence between assignment and treatment may not be
perfect.

Examples:

• Parental background for returns to schooling (Willis-Rosen, 1979).

• Quarter of birth for returns to schooling (Angrist and Krueger, 1994).

• Nearby college for returns to schooling (Card, 1995b)

• WWII for returns to schooling (Ichino and Winter-Ebmer, 2001)

• Vietnam war lottery for the effect of the military service (Angrist, 1990).
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3.2 Definition of potential outcomes

The participation into treatment for individual i is a function of the full
N-dimensional vectors of assignments Z

Di = Di(Z) (68)

The outcome for individual i is a function of the full N-dimensional vector of
assignments Z and treatments D:

Yi = Yi(Z,D) (69)

Note that in this framework we can define three (main) causal effects:

• the effect of assignment Zi on treatment Di;

• the effect of assignment Zi on outcome Yi;

• the effect of treatment Di on outcome Yi.

The first two of these effects are called intention-to-treat effects.

Our goal is to establish which of these effects can be identified and estimated,

and whether this can be done for a random individual in the population or

only for a random individual in a sub-group of the population.

To do so we need to begin with a set of assumptions and definitions.
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3.3 Assumptions of the Angrist-Imbens-Rubin Causal model

Assumption 1 Stable Unit Treatment Value Assumption (SUTVA).
The potential outcomes and treatments of individual i are independent of the

potential assignments, treatments and outcomes of individual j 6= i:

i. Di(Z) = Di(Zi)

ii. Yi(Z,D) = Yi(Zi, Di)

where Z and D (note the bold face) are the N-dimensional vectors of assign-

ments and treatments.

Given this assumption we can define the intention-to-treat effects:

Definition 2 The Causal Effect of Z on D for individual i is

Di(1) − Di(0)

Definition 3 The Causal Effect of Z on Y for individual i is

Yi(1, Di(1)) − Yi(0, Di(0))

It is crucial to imagine that for each individual the full sets of

• possible outcomes [Yi(0, 0), Yi(1, 0), Yi(0, 1), Yi(1, 1)]

• possible treatments [Di(0) = 0, Di(0) = 1, Di(1) = 0, Di(1) = 1]

• possible assignments [Zi = 0, Zi = 1]

even if only one item for each set is actually observed; this implies thinking

in terms of couterfactuals.

Implications for general equilibrium analysis?
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Table 1: Classification of individuals according to assignment and treatment

Zi = 0

Di(0) = 0 Di(0) = 1

Di(1) = 0 Never-taker Defier

Zi = 1

Di(1) = 1 Complier Always-taker

Note that each individual i effectively falls in one and only one of these four

cells, even if all the full sets of assignments, treatments and outcomes are

conceivable.

Examples:

• Parental background for returns to schooling (Willis-Rosen, 1979).

• Quarter of birth for returns to schooling (Angrist and Krueger, 1994).

• Nearby college for returns to schooling (Card, 1995b)

• WWII for returns to schooling (Ichino and Winter-Ebmer, 2001)

• Vietnam war lottery for the effect of the military service (Angrist, 1990).
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Assumption 2 Random Assignment.

All individuals have the same probability to be assigned to the treatment:

Pr{Zi = 1} = Pr{Zj = 1}

Given these first two assumptions we can consistently estimate the two in-

tention to treat average effects by substituting sample statistics on the RHS

of the following population equations:

E{Di | Zi = 1} − E{Di | Zi = 0} =
COV {DiZi}
V AR{Zi}

(70)

E{Yi | Zi = 1} − E{Yi | Zi = 0} =
COV {YiZi}
V AR{Zi}

(71)

Note that the ratio between the causal effect of Zi on Yi (eq. 71) and the

causal effect of Zi on Di (eq. 70) gives the conventional IV estimator

COV {Y, Z}
COV {D, Z}

(72)

The questions that we need to answer are:

• Under which assumptions this IV estimator gives an estimate of the

the average causal effect of Di on Yi and for which (sub-)group in the
population?

• Does the estimate depend on the instrument we use?
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Assumption 3 Non-zero average causal effect of Z on D.

The probability of treatment must be different in the two assignment groups:

Pr{Di(1) = 1} 6= Pr{Di(0) = 1}

or equivalently

E{Di(1) − Di(0)} 6= 0

Note that this assumption is equivalent to the assumption 36 in the conven-
tional approach to IV: i.e. the assumption that requires the instrument to be

correlated with the endogenous regressor.

This assumption can be tested as in the conventional approach.
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Assumption 4 Exclusion Restrictions.

The assignment affects the outcome only through the treatment and we can

write

Yi(0, Di) = Yi(1, Di) = Yi(Di).

This assumption plays the same role as exclusion restrictions (assumption

37) in the conventional approach to IV.

It cannot be tested because it relates quantities that can never be observed
jointly: we can never observe the two sides of the equation:

Yi(0, Di) = Yi(1, Di)

This assumption says that given treatment, assignment does not affect the
outcome. So we can define the causal effect of Di on Yi with the following

simpler notation:

Definition 4 The Causal Effect of D on Y for individual i is

Yi(1) − Yi(0)

As we know from the first lecture we cannot compute this causal effect because

there is no individual for which we observe both its components.

We can, nevertheless, compare sample averages of the two components for

individuals who are in the two treatment groups only because of different

assignments , i.e. for compliers or defiers.

Provided that assignment affects outcomes only through treatment, the

difference between these two sample averages seems to allow us to make

inference on the causal effect of D on Y . But ...
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Are the first four assumptions enough?

The four assumptions that we made so far allow us to establish the relation

at the individual level between the intention to treat causal effects of Z on D

and Y and the causal effect of D on Y .

Yi(1, Di(1)) − Yi(0, Di(0))

= Yi(Di(1)) − Yi(Di(0))

= [Yi(1)Di(1) + Yi(0)(1 − Di(1))] −
[Yi(1)Di(0) + Yi(0)(1 − Di(0))]

= (Di(1) − Di(0))(Yi(1) − Yi(0)) (73)

Equation 73 states that at the individual level the causal effect of Z on Y

(see Definition 3) is equal to the product of the the causal effect of Z on D

(see Definition 2) times the causal effect of D on Y (see Definition 4).

At a first approximation it would seem that by taking expectations on both
sides of 73 we could construct an estimator for the causal effect of D on Y .

But ...

E{Yi(1, Di(1)) − Yi(0, Di(0))}
= E{(Di(1) − Di(0))(Yi(1) − Yi(0))}
= E{Yi(1) − Yi(0) | Di(1) − Di(0) = 1}Pr{Di(1) − Di(0) = 1} −

E{Yi(1) − Yi(0) | Di(1) − Di(0) = −1}Pr{Di(1) − Di(0) = −1}
(74)

Equation 74 clearly shows that even with the four assumptions that were

made so far we still have an identification problem: the average treatment
effect for compliers may cancel with the average effect for defiers.

To solve this problem we need a further and last assumption.
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Assumption 5 Monotonicity.

No one does the opposite of his/her assignment, no matter what the assign-

ment is:

Di(1) ≥ Di(0) ∀i (75)

This assumption amounts to excluding the possiblity of defiers.

Note that the combination of Assumptions 3 and 5 implies:

Di(1) ≥ Di(0) ∀i with strong inequality for at least some i (76)

This combination is called Strong Monotonicity, and ensures that:

• there is no defier and

• there exists at least one complier.

Thanks to this assumption the average treatment effect for defiers is zero by

assumption in equation 74
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3.4 The Local Average Treatment Effect

3.4.1 Definition and relationship with IV

Given the monotonicity Assumption 5 equation 74 can be written as

E{Yi(1, Di(1)) − Yi(0, Di(0))}
= E{Yi(1) − Yi(0) | Di(1) − Di(0) = 1}Pr{Di(1) − Di(0) = 1}

(77)

Rearranging this equation we get the equation that defines the Local Average

Treatment Effect:

E{Yi(1)− Yi(0) | Di(1)− Di(0) = 1} =
E{Yi(1, Di(1)) − Yi(0, Di(0))}

Pr{Di(1) − Di(0) = 1}
(78)

Definition 5 The Local Average Treatment Effect is the average effect of
treatment for those who change treatment status because of a change of the

instrument; i.e. the average effect of treatment for compliers.

Substitution of the appropriate sample statistics in the expression on the

RHS gives an estimate of the LATE.

The correct estimator of the covariance matrix for the LATE is the White-

Robust estimator (see Angrist-Imbens, 1994)
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Equivalent definitions of the LATE

E{Yi(1) − Yi(0) | Di(1) = 1, Di(0) = 0}

=
E{Yi | Zi = 1} − E{Yi | Zi = 0}
Pr{Di(1) = 1} − Pr{Di(0) = 1}

(79)

=
E{Yi | Zi = 1} − E{Yi | Zi = 0}

Pr{Di = 1 | Zi = 1} − Pr{Di = 1 | Zi = 0}
(80)

=
COV {Y, Z}
COV {D, Z}

(81)

Comments

• In order to go from 78 to 79 note that

Pr{Di(1) − Di(0) = 1} = Pr{Di(1) = 1} − Pr{Di(0) = 1}

because there are no defiers.

• In order to go from 80 to 81 see the appendix 6.3

• The last expression 81 shows that the IV estimand is the LATE. In other

words, under the assumptions made above IV estimates are estimates of
Local Average Treatment Effects.

• The LATE is the only treatment effect that can be estimated by IV,
and the causal interpretation of IV can only coincide with the causal

interpretation of the LATE
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Table 2: Causal effect of Z on Y according to assignment and treatment status

Zi = 0

Di(0) = 0 Di(0) = 1

Di(1) Never-taker Defier

= 0 Yi(1, 0) − Yi(0, 0) = 0 Yi(1, 0) − Yi(0, 1) = −(Yi(1) − Yi(0))

Zi

= 1

Di(1) Complier Always-taker

= 1 Yi(1, 1) − Yi(0, 0) = Yi(1) − Yi(0) Yi(1, 1) − Yi(0, 1) = 0

3.4.2 Causal interpretation of the LATE-IV estimator

• Each cell contains the causal effect of Z on Y (the numerator of LATE).

• The SUTVA assumption allows us to write this causal effect for each

individual independently of the others.

• The random assignment assumption allows us to estimate this average

effect using sample statistics.

• Exclusion restrictions ensure this causal effect is zero for the always- and

never-takers; it is non-zero only for compliers and defiers (via D).

• The assumptions of strong monotonicity ensure that there are no defiers
and that compliers exist.

All this ensures that the numerator of the LATE estimator is the average

effect of Z on Y for the group of compliers (absent general equilibrium con-

siderations).
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Table 3: Frequency of each type of individual in the population

Zi = 0

Di(0) = 0 Di(0) = 1

Di(1) Never-taker Defier

= 0 Pr{Di(1) = 0, Di(0) = 0} Pr{Di(1) = 0, Di(0) = 1}
Zi

= 1

Di(1) Complier Always-taker

= 1 Pr{Di(1) = 1, Di(0) = 0} Pr{Di(1) = 1, Di(0) = 1}

• The denominator of the Local Average Treatment Effect is the frequency

of compliers.

• Note that the frequency of compliers is also the average causal effect of

Z on D (see eq 80):

E{Di | Zi = 1}−E{Di | Zi = 0} = Pr{Di = 1 | Zi = 1}−Pr{Di = 1 | Zi = 0}.

• Indeed the LATE-IV estimator is the ratio of the two average intention-

to-treat effects: the effect of Z on Y divided by the effect of Z on D.
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3.5 Effects of violations of the LATE assumptions

3.5.1 Violations of Exclusion Restrictions

Suppose that all the assumptions hold except for the exclusion restrictions.
Let the causal effect of Z on Y be

Hi = Yi(1, d1) − Yi(0, d0)

where (d1 = d0 = 0) for never takers, (d1 = d0 = 1) for always takers and

(d1 = 1; d0 = 0) for compliers.

Exclusion restrictions require

• for non-compliers: Hi = 0;

• Also for compliers Hi = 0 but Hi should be interpreted as the direct

effect of Z on Y in addition to the indirect effect via D.

Then the IV estimand is equal to:

E[Hi | i is a complier] + E[Hi | i is a noncomplier] · P [i is a noncomplier]

P [i is a complier]
(82)

• The first term is the LATE plus the bias due to violations of exclu-

sion restrictions for compliers; the bias would exist even with perfect

compliance.

• The second term is due to violations of exclusion restrictions for non-

compliers; it decreases with compliance.

Note that the higher the correlation between assignment and treatment (i.e.

the “stronger” the instrument), the smaller the odds of non-compliance and

consequently IV is less sensitive to violations of exclusion restrictions, because
the second term of the bias defined above decreases.

However, even the strongest instruments would suffer from violations of ex-

clusion restrictions for compliers (the first term).

46



3.5.2 Violations of the Monotonicity Condition

Suppose that all the assumptions are satisfied except monotonicity. Then the
IV estimand is equal to the LATE plus the following bias:

−λ · {E[Yi(1)−Yi(0) | i is a defier]−E[Yi(1)−Yi(0) | i is a complier]} (83)

where

λ =
P (i is a defier)

P (i is a complier) − P (i is a defier)

• The first multiplicative component of the bias is λ. This component

is related to the probability of defiers and is zero if the monotonicity

assumption is satisfied.

• Note that λ decreases with the proportion of defiers and its denominator

is the average causal effect of Z on D. So again the “stronger” the
instrument the smaller the bias.

• The second multiplicative component is the difference between the av-
erage causal effect of D on Y for compliers and defiers.

• Note that this second component could be close to zero, even if mono-
tonicity is not satisfied.
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3.6 LATE with multiple instruments, with Covariates and with

non-binary treatments

Angrist and Imbens (1994) and (1995) show the following important results

i. Multiple Instruments

• The standard IV-TSLS estimator with multiple instruments gives

an average of the LATE estimates that we would obtain using each

instrument separately.

• In this case the weights are proportional to the “strength” of the

instrument: the bigger the impact of the instrument on the regressor,

the more weight it receives in the TSLS linear combination.

ii. Covariates

In the presence of covariates the interpretation of LATE is not so simple.

• One possibility is to assume that counterfactuals are additive in

covariates which leaves things unchanged

• The other possibility is to think that the TSLS estimate is a variance-

weighted average of the LATEs conditional on the covariates.

iii. Non-binary treatments
The LATE interpretation of IV-TSLS can be easily extended to the non-

binary treatments (see Angrist and Imbens , 1995)
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3.7 Alternative and more informative ways to estimate the LATE

IV is not the only way to estimate the LATE. Imbens and Rubin (1997a),
Imbens and Rubin (1997b) and Hirano, Imbens, Rubin and Zhou (2000)

propose a different estimation strategy which not only allows to estimate the

LATE but also:

• allows to estimate the entire outcome distributions for the always takers,

the never takers and the compliers;

• gives insights on the characteristics of these subgroups in the population

• offers a way to test a weaker version of the exclusion restrictions assump-

tion.

The starting point of this alternative estimation strategy is the observation

that, given the absence of defiers:

• units such that Zi = 0 and Di = 1 are certainly always-takers;

• units such that Zi = 1 and Di = 0 are certainly never-takers;

• units such that Zi = 1 and Di = 1 are a mixture of always-takers and
compliers;

• units such that Zi = 0 and Di = 0 are a mixture of never-takers and
compliers;

The impossibility to observe counterfactual events prevents the identification

of the compliers but not the possibility to estimate the probability that a
unit belongs to one of the three sub-populations.
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The probability to be always-taker, never-taker, or complier

Denote with:

• ωa the probability to be an always-taker,

• ωn the probability to be a never-taker,

• ωc the probability to be a complier

Given that assignment is random it follows that:

φn ≡ Pr(Di = 0|Zi = 1) =
ωn · Pr(Zi = 1)

Pr(Zi = 1)
, (84)

and

φa ≡ Pr(Di = 1|Zi = 0) =
ωa · Pr(Zi = 0)

Pr(Zi = 0)
, (85)

where note that φn and φa are directly estimable from the observed sample.

Therefore the correspondent sample statistics can be used as estimates of the

unobservable probabilities ωn and ωa.

Since there are no defiers, ωn + ωa + ωc = 1 and therefore an estimate of the
probability to be a complier can be obtained using the fact that:

φc = 1 − φa − φn. (86)

Note that this is the denominator of the LATE.
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The outcome distribution for the always-takers, the never-takers
and the compliers

Denote with:

• gn1(yi) the unobservable outcome distribution of the never takers as-

signed to treatment;

• gn0(yi) the unobservable outcome distribution of the never takers not
assigned to treatment;

• gn(yi) the unobservable outcome distribution of the never takers.

If the exlusion restriction assumption holds:

gn1(yi) = gn0(yi) = gn(yi). (87)

A similar notation can be used for the always takers and for them as well:

ga1(yi) = ga0(yi) = ga(yi). (88)

Denote with fzd(yi) the directly estimable outcome distribution for the units
such that Zi = z and Di = d. Note that:

• the units such that Zi = 1 and Di = 0 are certainly never takers assigned

to treatment and therefore:

f10(yi) = gn1(yi) (89)

• the units such that Zi = 0 and Di = 1 are certainly always takers not

assigned to treatment and therefore:

f01(yi) = ga0(yi) (90)

So, we can easily estimate, using the sample, the distribution of these two

sub-populations.
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We can also directly estimate the distribution f00(yi) which corresponds to

units who are a mixture of compliers and never takers. However, given the

probabilities to be in one of these two sub-populations (see 84, 85 and 85),

we can write that:

f00(yi) =
φn

φc + φn
gn(yi) +

φc

φc + φn
gc0(yi). (91)

Similarly for the observed distribution f11(yi) which can be written as:

f11(yi) =
φa

φc + φa
ga(yi) +

φc

φc + φa
gc1(yi). (92)

Inverting these expressions and using the equations 87, 88, 90 and 89, we

can write the four unoservable distributions of interest in terms of directly

estimable distributions and parameters.

• compliers assigned to no treatment:

gc0(yi) =
φc + φn

φc
f00(yi) −

φn

φc
f10(yi), (93)

• compliers assigned to treatment:

gc1(yi) =
φc + φa

φc
f11(yi) −

φa

φc
f01(yi) (94)

• always takers:

ga(yi) = f01(yi) (95)

• never takers:

gn(yi) = f10(yi) (96)

These results are important in several ways.
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3.7.1 Anatomy of IV estimates

Let Ci = {c, n, a, d} if i is, respectively, a complier, a never taker, an always
taker or a defier . From equations 78, 79, 80 and 81 we can rewrite the IV

estimator as:

∆̂IV =
COV {Y, Z}
COV {D, Z}

=
ȳ.1 − ȳ.0

d̄1 − d̄0
(97)

=
d̄1ȳ11 − d̄0ȳ10

d̄1 − d̄0
−

(1 − d̄0)ȳ00 − (1 − d̄1)ȳ01

d̄1 − d̄0

=
∫

yi

yiĝc1(yi) −
∫

yi

yiĝc0(yi)

where ȳzd is the average outcome for units such that (Di, Zi) = (d, z), d̄z is

the average of the treatment indicator for units such that Zi = z, and ĝcz(yi)

is the estimate of the distribution gcz(yi) obtained: as

ĝcz(yi) = (1−z)

[
φc + φn

φc
f̂00(yi) −

φn

φc
f̂10(yi)

]
+z

[
φc + φa

φc
f̂11(yi) −

φa

φc
f̂01(yi)

]
,

(98)

where the f̂zd(yi) are the sample counterparts of the four directly estimable
distributions fzd(yi).

The above decomposition has two important implications:

i. IV can only give estimates of the difference on the LHS of

E{Yi(1) − Yi(0)|Ci = c} = E{Yi(1)|Ci = c} − E{Yi(0)|Ci = c} (99)

while the estimation of the distribution gcz(yi) allows to obtain estimates
of the two terms on the RHS. These separate estimates are informative.

ii. The IV estimator does not take into account the fact that the two dis-

tributions f00(.) and f11(.) are mixtures of gn(.) and gc0(.), and ga(.) and

gc1(.) respectively. Being densities, these mixtures should be non neg-
ative, but inspection of 98 shows that in small samples this constraint

may not be satisfied. Imbens and Rubin (1997b) offer an interesting

discussion (with an example) of the consequences of not imposing this

constraint.
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3.7.2 Maximum likelihood estimation

A more informative alternative to IV is a maximum likelihood approach in
which the the compliance status becomes a parameter to be estimated, to-

gether with the outcome distributions for each type of unit in the population.

As shown in Imbens and Rubin (1997a) and Mercatanti (1999), a likelihood

function can be defined

• over the full set of actual and counterfactual “observations” for each

unit, but

• assuming that the counterfactual “observations” are missing at random

and

• integrating appropriately over the missing observations.

As a result, using SUTVA and random assignment the likelihood of the ob-
served outcomes can be written as:

L (θ|Yobs) = Πi∈(Di=1,Zi=0)(ωag
i
a0 + ωdg

i
d0) (100)

× Πi∈(Di=0,Zi=1)(ωng
i
n1 + ωdg

i
d1)

× Πi∈(Di=1,Zi=1)(ωag
i
a1 + ωcg

i
c1)

× Πi∈(Di=0,Zi=0)(ωng
i
n0 + ωcg

i
c0).

where Yobs is the vector of observed outcomes and

θ = (ωa, ωn, ωc, ωd, ηa0, ηa1, ηn0, ηn1,ηc0, ηc1, ηd0, ηd1) , (101)

is the parameters vectors composed by

• the proportions ωt (with t = c, a, n, d) of compliers, always takers, never

takers and defiers in the population

• the parameters ηtz are the parameters of the eight outcome distributions

gtz of the units assigned to treatment z and belonging to group t.

Given the presence of mixtures of distributions in this likelihood its maxi-

mization requires special algorithms (like the EM algorithm) for which see

Imbens and Rubin (1997a,b,), Mercatanti (1999) and their references.
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Maximum likelihood estimation of the LATE

Adding the other three assumptions for the identification of the LATE we

obtain a likelihood from which the LATE can be estimated:

• Monotonicity imposes the absence of defiers which implies ωd = 0 and

the irrelevance of the distributions gdz and of their parameters ηdz.

• The existence of a positive causal effect of Z on D ensures the existence

of some compliers which implies ωc > 0

• Exclusion restrictions require that, given D, Z has no effect on Y and

therefore impose that

– for the compliers gc1 − gc0 6= 0 only because the treatment differs in
the two groups;

– for the always takers ga0 = ga1 = ga;

– for the never takers gn0 = gn1 = gn.

With these assumption, the likelihood simplifies to

LLATE (θ|Yobs) = Πi∈(Di=1,Zi=0)ωag
i
a (102)

× Πi∈(Di=0,Zi=1)ωng
i
n

× Πi∈(Di=1,Zi=1)(ωag
i
a + ωcg

i
c1)

× Πi∈(Di=0,Zi=0)(ωng
i
n + ωcg

i
c0),

Where the vector of parameters now is

θ = (ωa, ωn, ωc, ηa, ηn, ηc0, ηc1) . (103)

Given maximum likelihood estimates of the parameters θ, an estimate of the

LATE can be obtained substituting estimates of the distributions gc1(y) and

gc0(y) in:

E{Yi(1) − Yi(0) | Ci = c} =
∫

y gc1(y) dy −
∫

y gc0(y) dy (104)

Imbens and Rubin (1997a) call this parameter CACE (Compliers Average
Causal effect) when the exclusion restriction assumption cannot be assumed

to hold for the compliers.
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3.7.3 A test of a weak version of the exclusion restrictions assumption

• Consider again the unrestricted likelihood function 100 and impose strong
monotonicity.

• Assume that that the exclusion restriction holds for compliers.

• Allow instead for the possibility that exclusion restrictions do not hold

– for the always takers: ga0 6= ga1;

– for the never takers: gn0 6= gn1.

• The likelihood under these assumptions is

Lweak (θ|Yobs) = Πi∈(Di=1,Zi=0)(ωag
i
a0) (105)

× Πi∈(Di=0,Zi=1)(ωng
i
n1)

× Πi∈(Di=1,Zi=1)(ωag
i
a1 + ωcg

i
c1)

× Πi∈(Di=0,Zi=0)(ωng
i
n0 + ωcg

i
c0).

• A likelihood ratio test based on Lweak (θ|Yobs) and LLATE (θ|Yobs) provides

a test for the hypothesis that the exclusion restriction assumptions holds

for the always takers and the never takers, although it may not hold for
the compliers, for whom no test is possible

A similar testing strategy can also be used to test the monotonicity assump-

tion.

3.7.4 LATE and Average Effect of Treatment on the Treated

Evidence that the outcome distribution is similar for the compliers treated

and for the always takers suggests that the LATE may be close to the Average
Effect of Treatment on the Treated (ATT).

In general the comparison between the outcome distributions may contain

useful information.
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3.8 Comments on the LATE and the conventional interpretation

of IV

i. The AIR approach helps to clarify the set of assumptions under which

IV may be interpreted as a way to estimate an average causal effect.

ii. To identify the effect of treatment on the treated the conventional ap-

proach assumes (see eq. 49)

E{Ui(1) − Ui(0) | Zi, Di = 1} = E{Ui(1) − Ui(0) | Di = 1} (106)

This assumption says that the average idiosyncratic gain for the treated
conditioning on the instrument, should be identical to the unconditional

average idiosyncratic gain for the treated.

iii. Translated in the AIR framework assumption 106 is (see the debate

Heckman-AIR in AIR, 1996):

E{Yi(1)−Yi(0) | Zi, Di(Zi) = 1} = E{Yi(1)−Yi(0) | Di(Zi) = 1} (107)

E{Yi(1) − Yi(0) | Di(1) = 1; Di(0) = 1} (108)

= E{Yi(1) − Yi(0) | Di(1) = 1; Di(0) = 0}

In words, the causal effect of D on Y must be the same for both com-
pliers and always-taker, i.e. must be identical for all the treated. The

maximum likelihood approach to the estimation of the LATE allows to

obtain evidence on the validity of this assumption, while in the conven-
tional approach there is no way to assess its validity.

iv. Note that in the conventional approach also the assumption of strong

monotonicity is hidden. It is in fact implicit in the specification of

the participation equation (more precisely: the common parameter β

in equation 13).

v. If one does not want to assume that the effect of treatment is the same for

both compliers and always-taker and given all the other assumptions, the

AIR approach concludes that the only causal effect that one can identify

and estimate is the causal effect for compliers that is the Local Average
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Treatment Effect: the effect of treatment on those who would change

treatment status because of a different assignment.

vi. Intuitively this makes sense because compliers are the only group on

which the data can be informative :

• compliers are the only group with individuals observed in both treat-

ment status (given that defiers have been ruled out).

• always takers and never-takers are observed only in one of the two
treatment status

• The LATE is analogous to a regression coefficient estimated in linear
models with individual effects using panel data. The data can only

be informative about the effect of regressors on individuals for whom

the regressor change over the period of observation.

vii. The maximum likelihood approach to the estimation of the LATE pro-

vides additional valuable information with respect to IV. In particular it

allows to get a better sense of who are the compliers, the always-takers
and the never-takers, and even to test a weak version of the exclusion

restrictions assumption.

viii. The conventional approach, however, argues that the LATE is a contro-

versial parameter because it is defined for an unobservable sub-population

and because it is instrument dependent. And therefore it is no longer
clear which interesting policy question it can answer. Furthermore it is

difficult to think about the LATE in a general equilibrium context

ix. Hence, the conventional approach seems to conclude that it is preferable

to make additional assumptions like 106 or the ones required for the

Heckman two steps procedures, in order to answer more interesting and
well posed policy questions.
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3.9 Problems with IV when the instruments are weak

An instrument is “weak” when its correlation with the treatment is low. This
situation has three important consequences:

i. If the assumptions that ensure consistency are satisfied,

(a) the standard error of the IV estimate increases with the weakness

of the instrument.

(b) in finite samples the IV estimate is biased in the same way as the

OLS estimate, and the weaker the instrument the closer the IV bias
to the OLS bias.

ii. If the assumptions that ensure consistency are violated, the weakness

of the instrument exacerbates the inconsistency of the IV estimate, so

that even a mild violation leads to an inconsistency which is larger the
weaker the instrument.

These consequences apply with some caveats to both the conventional and

the AIR approach to IV
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3.9.1 Weakness of the instrument and efficiency

Using a more general matrix notation, the covariance of the IV estimator
using the conventional approach is given by

V AR{∆} = σ2(Z ′D)−1Z ′Z(Z ′D)−1 (109)

Clearly a weaker correlation between Z and D reduces efficiency of the IV
estimator.

The correct estimator of the covariance matrix for the LATE is the White-

Robust estimator (see Angrist-Imbens, 1994). But also in this case the weak-

ness of the instrument generates a similar problem.
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3.9.2 Weakness of the instrument and finite samples

Within the conventional approach,

• even if the instruments are legitimate and IV is consistent, in finite

samples IV gives biased estimates.

• The weaker the instrument the closer is IV to OLS.

The intuition is:

• Consider the extreme case in which COV {D, Z} = 0.

• Nevertheless, in finite samples, the first stage provides estimates of the

causal effect of Z on D.

• These estimates allow to obtain an arbitrary decomposition of D into

an “exogenous” and an “endogenous” component.

• It is not surprising that the second stage regression of the outcome on

the (arbitrary) exogenous component is similar to OLS.

Staiger and Stock, 1997 give a useful practical method to evaluate the seri-

ousness of this problem (independently of distributional assumptions):

• Let F be the F-statistics on the excluded instruments in the first stage.

• 1/F is an estimate of the ratio between the finite sample bias of IV and
the OLS bias.

Within the AIR approach, this finding implies that in finite samples, if the

instrument is weak, IV may be closer to OLS than to the LATE.

See the discussion of Angrist and Krueger (1991) in Staiger and Stock (1997)

and in Bound et al. (1995).
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3.9.3 Weakness of the instrument and consistency

In the presence of violations of the exclusion restrictions (even if these are
mild) the weakness of the instrument exaggerates the size of the related bias.

Consider the conventional version of our model:

Yi = µ + ∆Di + Ui (110)

The IV estimand is

Plim{∆IV } =
COV {Z, Y }
COV {Z, D}

(111)

= ∆ +
COV {Z, U}
COV {Z, D}

Note that:

• if COV {Z, U} 6= 0 IV is inconsistent;

• the inconsistency is larger the smaller the COV {Z, D};

• even if COV {Z, U} is small the inconsistency can be very large.

See the discussion of Angrist and Krueger (1991) in Bound et al. (1995).

The same problem exists in the AIR approach, with the caveat that the bias

has to be intended with respect to the LATE.

• section 3.5.1 we have seen that the bias due to exclusion restrictions

violations increases with the weakness of the instrument.

• In section 3.5.2 we have seen that the bias due to monotonicity violations

increases with the weakness of the instrument.
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4 A Model of the Effect of Education on Earnings

In order to better understand the nature of the treatment effects studied

so far, we will now define them in the context of the relationship between

education and earnings.

Hundreds of studies from many different countries have estimated the follow-

ing wage equation (see Mincer, 1974):

ln(W ) = α + βS + γE + δE2 + ε (112)

where W is the wage, S is years of schooling and E is years of labor mar-

ket experience, finding that more educated workers earn higher wages (e.g.

Psacharopoulos, 1985; Ashenfelter and Rouse, 1999; Card 1995a).

There are few similar regularities in economics and this is the reason why

labor economists devoted so much attention to it.

Despite this evidence “most economists are reluctant to intepret the earning
gap between more or less educated workers as an estimate of the causal effect

of schooling”. (Card, 1995a)

So far we have seen in general terms the problems connected to the definition

and identification of causality.

In this part of the course we build on the canonical model of Becker (1967),

as revisited by Card (1995a), to explore the counterpart of those general

problems in the specific analysis of the causal effect of education on earnings.
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4.1 The income generating function

We assume that going to school is a way to accumulate human capital and
that a higher human capital generates higher earnings in the labor market:

Y = Y (S) (113)

where:

• S is the number of years of scholing;

• Y (S) is the income generated by the human capital accumulated in S

years of schooling;

• the income generating function is assumed increasing and concave (Y ′ >

0 and Y ′′ < 0).

(Figure: The income generating function)
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4.2 The objective function

Individuals choose the optimal number of years of schooling S to maximize
the present discounted value of income

V (S, Y ) =
∫ ∞

S
Y (S)e−rtdt =

Y (S)e−rS

r
, (114)

where Y (S) is income and r is the discount rate.

Taking logs, we can write the utility to be maximised as

Ũ(S, Y ) = log(V (S, Y )) = log(Y ) − rS − log(r) (115)

which formalizes the idea that:

• schooling is useful because it generates income

• but it is costly because of foregone earnings.

(Figure: earnings at different levels of S)

Here we adopt a more general expression for the utility function:

U(S, Y ) = log(Y ) − h(S) (116)

where h(s) captures also other components of the cost of schooling in addition

to foregone earnings.

Strict convexity of h implies that the marginal cost of each additional year
of schooling rises by more than foregone earnings:

• tuition;

• foregone earnings;

• psychic costs;

• liquidity constraints.

(Figure: Indifference curves for utility functions 115 and 116)
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4.3 The optimization problem

The optimization problem for each individual is therefore:

Max U(Y, S) = log(Y ) − h(S) (117)

subject to Y = Y (S)

The optimal number of years of schooling is given by the solution of the

F.O.C:
Y ′(S)

Y (S)
= h′(S) (118)

where:

• Y ′(S)
Y (S) =

– marginal rate of return of one year of schooling, or

– marginal rate of transformation of schooling into income;

• h′(S) =

– marginal cost of one year of schooling, or

– marginal rate of substitution between schooling and income.

(Figure: The optimal choice of years of schooling)

66



4.4 From the model to the data

The model as described above does not allow for heterogeneity across indi-
viduals and therefore generates a single optimal combination of S and Y .

If we plot the combinations S and Y observed in the data (i.e. a sample of

empirical observations) we obtain a cloud of points.

(Figure: The data)

This suggests that we need to introduce some form of heterogeneity in the
model if we want the model to say something interesting on the data.

Card (1995a) assumes heterogeneity in the individual marginal returns to

schooling and in the individual marginal costs of schooling


Y ′(S)

Y (S)



i

= βi(S) = bi − kbS (119)

[h′(S)]i = δi(S) = ri + krS (120)

For example:

bi: differences in individual ability that generate heterogeneity of marginal

returns to schooling.

ri: differences in liquidity constraints that generate heterogeneity of marginal

costs of schooling.
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Understanding the Heterogeneity of Marginal Returns

The marginal return is a linear function of schooling with individual specific

intercepts: 
Y ′(S)

Y (S)



i

= βi(S) = bi − kbS

We can interpret bi as an indicator of “ability”.

This assumption implies a specific functional form for the income generating
function. By integration:

[Y (S)]i = ae(biS−(kb
2 S2)) (121)

(Figure: Income generating functions for different abilities)

Note that this implies a specific characterization of ability:

• ability increases the slope of the income generating function, i.e. the

marginal return to schooling

With standard homothetic preferences this assumption ensures that more

able individuals choose more shooling.

We could have assumed alternatively that

• ability shifts up the income generating function in a parallel fashion, i.e.

it increases incomes for each level of schooling leaving marginal returns

unchanged

In this case with standard homothetic preference more able people choose
less schooling.

Figure( Comparison of optimal choices in the two cases)
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Understanding the Heterogeneity of Marginal Costs

Also the marginal cost is a linear function of schooling with individual specific

intercepts:

[h′(S)]i = δi(S) = ri + krS

We can interpret δi as the individual specific rate of return of the funds used

to finance the Sth year of scholing (i.e. the opportunity cost).

Examples:

i. kr = 0 and ri = r

the opportunity cost of schooling does not increase with schooling and

is equal across individuals. This the case of the utility function 115 and
implies linear indifference curves with equal slopes for different individ-

uals.

ii. kr = 0 and ri 6= rj for i 6= j
the opportunity cost of schooling does not increase with schooling but

differs across individuals which implies linear indifference curves with

different slopes for different individuals.

iii. kr > 0 and ri = r

The opportunity cost of schooling increases with schooling but is equal

across individuals, which implies convex indifference curves with equal
slopes for different individuals.

iv. kr > 0 and ri 6= rj for i 6= j

The opportunity cost of schooling increases with schooling and differs
across individuals, which implies convex indifference curves with differ-

ent slopes for different individuals.

(Figure: Comparison of the four examples)

To be focused, we will consider ri as an indicator of the liquidity constraint

faced by each individual.
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Optimal schooling choices with heterogeneity

Substituting 119 and 120 in the first order condition 118, the optimal amount

of schooling now differs across individuals:

S∗
i =

(bi − ri)

kb + kr
(122)

The model can therefore generate data similar to what we observe. Note

that:

• The optimal amount of schooling changes across individual because abil-

ity and discount rates differ.

• E.g., for given discount rate more able children choose more schooling.

• E.g., for given ability, less constrained children choose more schooling.

(Figure: Optimal choices of schooling with heterogeneity)

A controversial important correlation

The correlation between the individual ability bi and the individual discount

rate ri can be expected to be negative if, for example:

• ability is partially inherited;

• more able parents have more education and higher incomes;

• higher income families have lower discount rates because

– they are less liquidity constrained,

– they like more education.

Given this expectation, the solution implies that richer children are likely to

choose more schooling because they are on average more able and have lower
discount rates.

(Figure: given the model is the evidence consistent with this controversial

correlation?)
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The causal effect of education in this model

For each individual we can define the marginal return to schooling βi at the

optimal choice:

β∗
i = bi − kbS

∗
i = (1 − φ)bi + φri (123)

where φ = kb

kb+kr
.

Note that this is the causal effect of schooling on earnings for person i and,

because of the Fundamental Problem of Causal Inference (Holland, 1986), it
cannot be identified and measured.

We are, therefore, interested in understanding which average causal effects

can be identified and measured using some standard statistical methods:

• Randomized control experiments;

• OLS estimation;

• IV estimation.

We will study the outcome of these methods when they are applied to data

generated by a simplified version of the model presented above, in which there
are only four types of individuals.
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4.5 Data generated by a simplified model with four types of indi-

viduals

Consider a simplified version of the model corresponding to the example 2 on

page 69 in which we assume linear indifference curves with different intercepts

across individuals (kr = 0 and ri 6= rj for i 6= j).

Denoting log-earnings with y, the model is:

Max Ui(y, S) = y − riS (124)

subject to y = biS −
kb

2
S2

βi(S) = bi − kbS. (125)

S∗
i =

(bi − ri)

kb
(126)

β∗
i = bi − kbS

∗
i = ri. (127)

Note the difference between equation 127 and equation 123.

In what follows, to simplify the notation, we will omit the * denoting values

corresponding to optimal choices.

(Figure: The optimal choice for an individual in this model)
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The four types

Assume that there are only two values for each heterogeneity parameter:

bH > bL

rH > rL

so that there are four possible combinations denoted by g = {LH, HH, LL, HL}.

Each group g = {i, j} operates a different educational choice

Sg ≡ Si,j =
(bi − rj)

kb
, (128)

which implies the following optimal returns to schooling.

βLH = βHH = rH (129)

βLL = βHL = rL.

(Figure: Optimal choices for the four groups.)

The distribution of the four types in the population is given by:

{PLL, PLH , PHL, PHH}

Note that with this data generating process, the average causal effect of

education in the population is:

β̄ = (PLH + PHH)rH + (PLL + PHL)rL = r̄, (130)

which would reduce to r̄ = rH+rL

2 in case of a uniform distribution across

groups (Pg = P = 0, 25 ∀ g).
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4.6 What can we learn from a randomized controlled experiment?

Suppose that we can extract two random samples of the population, denoted
by C and T .

Suppose also that we can offer to individuals in T a fellowship which induces

them to increase their education. This implies for them a reduction of the

marginal cost of education rj .

(Figure: Optimal choices of the treated and the controls in a randomized

experiment.)

To simplify the analysis, without loss of generality, we assume that the fel-

lowship program is structured in a way such that every treated individual
increases her education by the same amount ∆S (e.g. one year).

∆Sg = ∆S ∀g. (131)

Given the randomized design of the experiment the controls provide the coun-

terfactual evidence of what would have happened to the treated in the absence

of the fellowship, and viceversa. Hence adapting equation 6 we obtain:

E(yi|i ∈ T )−E(yi|i ∈ C) = (PLH+PHH)rH∆S+(PLL+PHL)rL∆S = r̄∆S = β̄∆S

(132)
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Since we are interested in the average effect on income per unit of treatment

we can divide both sides by the average increase in education, which gives:

E{yi|i ∈ T} − E{yi|i ∈ C}
E{Si|i ∈ T} − E{Si|i ∈ C}

=
Eg{rg∆Sg}
Eg{∆Sg}

. (133)

=
(PLH + PHH)rH∆S + (PLL + PHL)rL∆S

∆S
= r̄

= β̄.

Note that, the expression on the left hand side of 133, is our estimand.

The estimand is equal to the value r̄ assumed in equilibrium by the average

return to education in the population, i.e. β̄.

If we substitute appropriate sample averages in the estimand we obtain a

consistent estimate of the average causal effect of education on earnings.

However:

• is such an experiment feasible?

– Ethical problems.

– Technical problems.

• Should we be interested in this theoretical parameter?
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4.7 What can we learn from OLS estimation?

Since the model implies a relationship between log-earnings and schooling ,
and both these variables are observables, we may try to estimate this rela-

tionship by OLS using observational data

Let’s first recall what is the equilibrium relationship between y and S implied

by the model. Note that what follows holds in general and not only in the
“four types” example.

This relationship can be derived taking the log of equation 121, evaluated at

the optimal individual choice Si:

[Y (Si)]i = ae(biSi−(kb
2 S2

i ))

which yield:

yi = ln(a) + biSi −
kb

2
S2

i (134)

where yi = ln [Y (.)]i.

Note that even if the theoretical relationship is quadratic the data points
generated by this model are likely to be aligned along a linear relationship

because:

• Among individuals with the same ability, different discount rates trace

a concave relationship between log earnings and schooling.

• Among individuals with the same discount rate, different abilities trace

a convex relationship between log earnings and schooling.

In data generated by both types of variability we may get a close-to-linear

relationship, which tend to convex or concave depending on which type of

heterogeneity has more variance.

(Figure: linearity of the relationship between log-earnings and schooling)
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Suppose now that we estimate the liner equation

yi = a + ρSi + εi.

The OLS estimator of ρ has a probability limit given by:

plim (ρ̂OLS) =
COV (yi, Si)

V AR(Si)
(135)

Following Card(1995a):

plim (ρ̂OLS) = (1 − α)b̄ + αr̄ (136)

where b̄ = E(bi), r̄ = E(ri),

α =
kb

kb + kr
− λ

and

λ =
σ2

b − σbr

(σ2
b − σbr) + (σ2

r − σbr)

which “is the fraction of the variance of schooling attributable to variation

in ability as opposed to variation in discount rates.”

In the case of fixed individual discount rates, kr = 0 implies δi = ri, so that
α = 1 − λ and

plim (ρ̂OLS) = λb̄ + (1 − λ)r̄. (137)

The OLS coefficient can be interpreted as a weighted average of the average

ability and the average discount rate with weights that depend, respectively,
on the variance of schooling due to ability and the variance due to discount

rates.
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We would like to know if we can recover from 137 the average marginal return

to schooling, which using 127 can be written as:

E(βi) = β̄ = b̄ − kbS̄ (138)

Note again that this holds in general for a model with kr = 0, even in the

presence of more than four types of individuals.

Using 138, equation 137 can be rewritten as:

plim (ρ̂OLS) = β̄ + λ(b̄ − r̄). (139)

Equation 139 says that the OLS regression of log-earnings on schooling yield

a inconsistent estimate of the average marginal return to schooling. The bias
is larger

• the larger is λ, i.e. the larger is σ2
b (the variance in ability) relative to

σ2
r (the variance in discount rates);

• the larger is b̄ − r̄, which is the difference between the average ability

and the average discount rate.

The expression λ(b̄− r̄) can be interpreted as the endogeniety bias due to the

fact that more able persons choose more schooling.

It is important to understand that OLS estimates ρ consistently. The problem

is that ρ is not equal β̄.

To better understand what we get using OLS, let’s go back to our “four types”

example and consider how ρ̂OLS changes with the distribution of individuals

across types.

(Figure: OLS estimates of Y on S with different distributions of types in the

population.)
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4.8 What can we learn from IV estimation?

The estimated equation is again:

yi = a + ρSi + εi

Consider a dichotomous instrument Zi such that

E(Si|Zi = 1) 6= E(Si|Zi = 0).

The IV estimator for the return to schooling has Plim (see the Appendix

Sections 6.1 and 6.3):

plim ρIV
Z =

COV {Y, Z}
COV {S, Z}

=
E{yi|Zi = 1} − E{yi|Zi = 0}
E{Si|Zi = 1} − E{Si|Zi = 0}

=
Eg{βg∆Sg|Z}
Eg{∆Sg|Z}

(140)

which in the case of our four types becomes:

plim ρIV
Z ==

PLHrH∆SLH + PHHrH∆SHH + PLLrL∆SLL + PHLrL∆SHL

PLH∆SLH + PHH∆SHH + PLL∆SLL + PHL∆SHL

• Eg: expectation taken on the distribution of the four groups.

• ∆Sg|Z : exogenous change in schooling induced by Z in each group.
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The traditional interpretation of IV

According to this interpretation the IV method reproduces the outcome of

a randomized experiment in which assignment to treatment is described by

the instrument Z and is controlled by nature in a way such that

∆Sg|Z = ∆SZ

i.e. the instrument induces the same marginal change in schooling for all the
four groups and therefore:

plim ρIV
Z = Eg(βg) = r̄ = β̄ (141)

IV estimates consistently the average return to schooling in the population.

In the absence of heterogeneity, i.e. if βg = β for all g, it estimates the true
and unique return in the population because:

plim ρIV
Z = Eg(βg) = β

(Figure: Optimal choices of the treated and the controls in a perfectly con-

trolled experiment: an IV interpretation)
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A non-orthodox interpretation of IV

Suppose instead that nature controls the treatment imperfectly. Then:

∆Sg|Z 6= ∆Sh|Z for g 6= h

i.e. the instrument induces a different marginal change in schooling in differ-

ent groups, and we obtain

Plim ρIV
Z =

Eg(βg∆Sg|Z)

Eg(∆Sg|Z)
6= r̄ = β̄.

The IV estimator based on Z is a weighted average of the marginal returns

to schooling in the four groups where the weights depend on the impact of Z

on S, ∆Sg|Z .

(Figure: Optimal choices of the treated and the controls in an imperfectly

controlled experiment: an IV interpretation)

This is also the LATE interpretation of IV:

IV estimates only the average return of those who change schooling because
of a change in the instrument, i.e the so called compliers.

Different instruments have different compliers:

• Distance to college

• Compulsory schooling age

• Liquidity constraints caused by World War 2
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4.9 An application to German data

Using data from the German Socio Economic Panel, we search for two in-
struments each one likely to affect a different group in the population (see

Ichino and Winter-Ebmer, 1999):

• Zi = 1 if father took part in World War 2 at the time the student was

10 years old

⇒ expected to affect the group HH with the highest return

• Wi = 1 if father has more than high–school education

⇒ expected to affect the group LL with the lowest return
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Who are the compliers of the father–in–war instrument Z?

Having a father in war causes a reduction in schooling for individuals in group

g = HH :

• these are high-ability but liquidity constrained individuals who choose

more schooling in the absence of the war constraint but drop out of
school if constrained by the war.

For none of the other groups the schooling decision is likely to be affected by

the war:

• The rich dynasties g = LL and g = HL suffer limited liquidity con-
straints: they are the never takers who never stop at lower education

anyway ;

• The poor dynasty g = LH suffers liquidity constraints and in addition

has low ability; they are the always takers who always stop at lower

education.

Hence we expect:

∆SLL|Z = ∆SHL|Z = ∆SLH|Z ≈ 0

plim ρIV
Z ≈ βHH (142)

IV based on Z should estimate the highest return in the population.

(Figure: Choices of the treated and the controls in a natural experiment)
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Evidence on the compliers of the father–in–war instrument Z

Having a father involved in the war reduces schooling:

• by 1.59 (0.39) years for those students whose father had only compulsory

education,

• only by 0.49 (0.82) years for other students.

Standard errors on parenthesis.

84



Who are the compliers of the father’s education instrument W?

Having a highly educated father causes an increase in schooling for individuals

in group g = LL:

• these are rich individuals with limited ability who may be pushed to

reach a higher education if their parents are highly educated, but would
not do it otherwise.

For none of the other groups the schooling decision is likely to be affected by

parental education:

• the groups g = HL and g = HH have high ability: they are the always–
takers who continue into higher education independently of the education

of the father.

• group g = LH has low ability and is heavily liquidity constrained: they

are the never–takers who don’t continue into higher education indepen-

dently of parental education

Hence we expect:

∆SHL|W = ∆SHH|W = ∆SLH|W ≈ 0

plim ρIV
W ≈ βLL + N (143)

where N > 0 is the potential bias caused by the existence of a direct causal

effect of family background on earnings.
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Evidence on the compliers of the father’s–education instrument W

If the father has a degree higher than highschool, the years of schooling of

the child increase:

• by 3.84 (0.66) years in households with self–employed heads,

• by 2.98 (0.31) years in households with white–collar heads

• only by 0.49 (0.96) years in households with blue–collar heads.

Standard errors in parentheses.
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What if each instrument affected more than one group?

Suppose that:

• the father–in–war instrument Z affected not only group g = HH but
also other groups. Then:

PlimβIV
Z =

Eg(βg∆Sg|Z)

Eg(∆Sg|Z)
≤ βHH .

• the educated–father instrument W affected not only group g = LL but

also other groups. Then:

PlimβIV
W =

Eg(βg∆Sg|W )

Eg(∆Sg|W )
≥ βLL.

As a result, the difference between the IV estimates obtained with the two

instruments would underestimate the true range of variation between the
highest return βLL and the lowest return βHH .

(Figure: Optimal choices and LATE estimates)
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IV estimates with different instruments in Germany

lnWi = β1 + β2EDUi + β3AGEi + β4AGE2
i + β5AGE3

i + εi

• Data: Men in the 1986 wave of the Socio–Economic Panel.

• Wi: hourly wage

• EDUi: years of education

• The instruments are

i. Zi = 1 if i had a father in the army during the war;

ii. Wi = 1 if i’s father has more than high–school education
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A potential problem leading to a richer specification

Bound and Jaeger (1996) argue that IV estimates could be biased upward by

unobserved differences between the characteristics of the treatment and the

control groups implicit in the IV scheme.

This would happen if treatment and control groups came from different social

backgrounds.

Following a suggestion by Card (1998) we therefore include also information

on parental background as control variables.

lnWi = β1 + β2EDUi + β3AGEi + β4AGE2
i + β5AGE3

i (144)

+β6HIGHEDFi + +β7BLUEFi + β8SELFFi + εi
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Empirical results

Returns for one further year of schooling are estimated to be:

• 11.7% for the father–in–war instrument

• 4.8% for the father’s–education instrument

These two estimates can be considered as an approximation of the upper and

lower bounds of the returns to schooling in Germany.

Further comments

• Father’s education is likely to have a direct positive impact on earn-

ings. Therefore, the IV estimate based on father’s education is likely to

overestimate the lowest return

• If the instruments affect the schooling choices of all the groups in the

population, the true range of variations of returns to schooling is likely
to be larger than the one implied by the above two estimates.
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Conclusions

• Returns to one year of education in Germany vary at least between 4.8%

and 11.7%.

• Several reasons suggest that, if anything, the true range is likely to be

larger than the one estimated here.

These results are consistent with the following picture:

• Returns to schooling are heterogeneous in the population.

• IV estimates should be interpreted as estimates of Local Average Treat-

ment Effects: they measure the average return to schooling of those who

change schooling because of the instrument.

• Therefore, with different instruments we can estimate the returns of

different groups in the population, and in particular the highest and the
lowest returns

• In this way we can approximate the range of variation of returns to
schooling in the population.
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Table 4: IV estimates of returns to schooling with different instruments in Germany.

IV: IV: IV: IV: OLS
Instrument Instrument: Instrument: Instrument:

Father Father Father Father
in war highly ed. in war highly ed.

Years of education 0.140 0.048 0.117 0.048 0.055
(0.078) (0.013) (0.053) (0. 014) (0.005)

Age (years) 0.106 0.215 0.141 0.215 0.208
(0.101) (0.039) (0.070) (0.039) (0.033)

Age2 /100 -0.183 -0.434 -0.263 -0.434 -0.418
(0.235) (0.093) (0.164) (0.094) (0.084)

Age3 /10,000 0.106 0.291 0.165 0.290 0.279
(0.175) (0.007) (0.123) (0.008) (0.007)

Father is a blue–collar — — 0.058 -0.001 0.004
worker (0,1) (0.051) (0.031) (0.026)

Father is — — -0.032 -0.041 -0.041
self–employed (0,1) (0.043) (0.042) (0.037)

Father has more than — — -0.209 — -0.019
high–school education (0,1) (0.172) (0.052)

Constant -0.684 -1.080 -0.909 -1.075 -1.060
(0.619) (0.483) (0.517) (0.484) (0.411)

R̄2 0.071 0.207 0.148 0.207 0.205
# Observations 1822 1822 1822 1822 1822
Partial R2 for 0.003 0.114 0.006 0.085 —
instrument in 1st stage
F-Test on instrument 5.53 211.2 14.2 189.2 —
in 1st stage

Standard errors in parentheses. The sample is taken from the 1986 wave of the German Socio–
Economic Panel. The dependent variable is the log of hourly wages. The “father in war” instrument
is an indicator that takes value 1 if the father has been involved in WWII. The “father highly ed.”
instrument takes value 1 if the father has obtained a degree higher than high–school.
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5 Matching methods for the estimation of causal ef-

fects

Matching methods offer a way to estimate average treatment effects when:

• controlled randomization is impossible and

• there are no convincing natural experiments providing a substitute to

randomization (i.e. a good instrument).

The central idea of these methods is to base the estimation of treatment
effects on a “very careful” matching of cases and controls.

The problem is that this careful matching can take place only on the basis of

observables.

Hence, matching methods require the debatable assumption of selection on

observables (or unconfoundedness). Intuitively, this assumption require that:

• the selection into treatment is completely determined by variables that
can be observed by the researcher;

• “conditioning” on these observable variables the assignment to treatment

is random.

Apparently it sounds like ... assuming away the problem. However, these

methods

• offer interesting insights for a better understanding of the problem of

the estimation of causal effects;

• the evidence in their favor is compelling (see Lalonde 1986, Dehejia and

Wahba 1999 and Smith and Todd 2000 ).
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5.1 Notation and the starting framework

Let:

• i denote a population of N individuals.

• Di ∈ {0, 1} be the treatment indicator for individual i.

• Yi(Di) denote the outcomes for each individual in the two potential treat-

ment situations

– Yi(1) is the outcome in case of treatment;

– Yi(0) is the outcome in case of no treatment. Hence, the observed

outcome for individual i:

Yi = DiYi(1) + (1 − Di)Yi(0) (145)

• ∆i be the causal treatment effect for individual i defined as

∆i = Yi(1) − Yi(0) (146)

which cannot be computed because only one of the two counterfactual

treatment situations is observed.

We want to estimate the average effect of treatement on the treated (ATT):

τ = E{∆i|Di = 1} = E{Yi(1) − Yi(0)|Di = 1} (147)

The problem is the usual one: for each individual we do not observe the
outcome in his/her counterfactual treatment situation.

Note that this can be viewed as a problem of “missing data”.
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Is the comparison by treatment status informative?

Let Yi denote the observed outcome.

A comparison by treatment status gives a biased estimate of the ATT:

E{Yi | Di = 1} − E{Yi | Di = 0} (148)

= E{Yi(1) | Di = 1} − E{Yi(0) | Di = 0}
= E{Yi(1) | Di = 1} − E{Yi(0) | Di = 1}

+E{Yi(0) | Di = 1} − E{Yi(0) | Di = 0}
= τ + E{Yi(0) | Di = 1} − E{Yi(0) | Di = 0}

The difference between the left hand side (which we can estimate) and τ is

the usual sample selection bias due to the fact that those who are not treated

are not representative of what would have happened to the treated in the

counterfactual situation of no treatment.

To put it differently, the outcome of the treated and the outcome of the

non-treated are not identical in the no-treatment situation.
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5.2 The case of random assignment to treatment

If assignment to treatment is random in the population, both potential out-
comes are independent of the treatment status, i.e.

Y (1), Y (0) ⊥ D (149)

where Y (1), Y (0) and D are the vectors of potential oucomes and treatment

indicators in the population.

In this case the missing information does not create problems because:

E{Yi(0)|Di = 0} = E{Yi(0)|Di = 1} = E{Yi(0)} (150)

E{Yi(1)|Di = 0} = E{Yi(1)|Di = 1} = E{Yi(1)} (151)

and substituting 150 and 151 in 147 it is immediate to obtain:

τ ≡ E{∆i | Di = 1} (152)

≡ E{Yi(1) − Yi(0) | Di = 1}
≡ E{Yi(1)|Di = 1} − E{Yi(0) | Di = 1}
= E{Yi(1)|Di = 1} − E{Yi(0)|Di = 0}
= E{Yi|Di = 1} − E{Yi|Di = 0}.

Randomization ensures that the sample selection bias is zero:

E{Yi(0) | Di = 1} − E{Yi(0) | Di = 0} = 0 (153)

Note that randomization implies that the missing information is “missing
completely at random” and for this reason it does not create problems.

If randomization is not possible and natural experiments are not available we

need to start from a different set of hypotheses.
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5.3 Unconfoundedness and selection on observables

Let X denote a matrix in which each row is a vector of pre-treatment observ-
able variables for individual i.

Definition 6 Unconfoundedness

Assignment to treatment is unconfounded given pre-treatment variables if

Y (1), Y (0) ⊥ D | X (154)

Note that assuming unconfoundedness is equivalent to say that:

• within each cell defined by X treatment is random;

• the selection into treatment depends only on the observables X .

Examples ...

Note that the situation of pure randomization implies a particularly strong

version of “unconfoundedness”, in which the assignment to treatment is un-

confounded independently of pre-treatment variables.
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Average effects of treatment on the treated assuming

unconfoundedness

If we are willing to assume unconfoundedness:

E{Yi(0)|Di = 0, X} = E{Yi(0)|Di = 1, X} = E{Yi(0)|X} (155)

E{Yi(1)|Di = 0, X} = E{Yi(1)|Di = 1, X} = E{Yi(1)|X} (156)

Using these expressions, we can define for each cell defined by X

δx ≡ E{∆i|X} (157)

≡ E{Yi(1) − Yi(0)|X}
≡ E{Yi(1)|X} − E{Yi(0)|X}
= E{Yi(1)|Di = 1, X} − E{Yi(0)|Di = 0, X}
= E{Yi|Di = 1, X} − E{Yi|Di = 0, X}.

Using the Law of Iterated expectations, the average effect of treatment on

the treated is given by:

τ ≡ E{∆i|Di = 1} (158)

= E{E{∆i|Di = 1, X} | Di = 1}
= E{ E{Yi|Di = 1, X} − E{Yi|Di = 0, X} |Di = 1}
= E{δx|Di = 1}

where the outer expectation is over the distribution of X|Di = 1.
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5.4 Matching and regression strategies for the estimation of aver-

age causal effects

Unconfoundedness suggests the following strategy for the estimation of the

average treatment effect defined in equations 157 and 158:

i. stratify the data into cells defined by each particular value of X ;

ii. within each cell (i.e. conditioning on X) compute the difference between

the average outcomes of the treated and the controls;

iii. average these differences with respect to the distribution of Xi in the

population of treated units.

This strategy raises the following questions:

• Is this strategy different from the estimation of a a linear regression of Y

on D controlling non parametrically for the full set of main effects and

interactions of the covariates X?

• Is this strategy feasible?

Here we are of course assuming that the crucial assumption of unconfound-

edness (which raises the most foundamental question) is satisfied.
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In which sense matching and regression differ?

The essential difference between regression and matching is the weighting

scheme used to take the average of the treatment effects at the different

values of the covariates.

Consider a simple example where there is a single binary covariate x and the

probability of treatment is positive at each value of x.

If the treatment is unconfounded given x we can write:

δ1 = E{Yi(1) − Yi(0)|Di = 1, xi = 1} = E{Yi(1) − Yi(0)|xi = 1} (159)

= E{Yi | Di = 1, xi = 1} − E{Yi | Di = 0, xi = 1}

δ0 = E{Yi(1) − Yi(0)|Di = 1, xi = 0} = E{Yi(1) − Yi(0)|xi = 0} (160)

= E{Yi | Di = 1, xi = 0} − E{Yi | Di = 0, xi = 0}

Using matching, the ATT is therefore

∆M = E{Yi(1) − Yi(0)|Di = 1} (161)

= δ0P (xi = 0 | Di = 1) + δ1P (xi = 1 | Di = 1)

= δ0
P (Di = 1 | xi = 0)P (xi = 0)

P (Di = 1)
+ δ1

P (Di = 1 | xi = 1)P (xi = 1)

P (Di = 1)

• The weights used by the matching estimator are proportional to the

probability of treatment at each value of the covariates.

• Zero weight is given to cells in which the probability of treatment is zero.
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Suppose that we estimate instead the (fully saturated) model

Yi = α + βxi + ∆rDi + εi. (162)

where E{εD} = E{εx} = 0, so that

∆r =
E{[Di − E{Di | xi}]Yi}
E{[Di − E{Di | xi}]Di}

. (163)

By unconfoundedness, ∆r is free of selection bias.

We can also write that:

Yi = E{Yi(0) | xi} + E{Yi(1) − Yi(0) | xi}Di + ε (164)

Substitute 159, 160 and 164 into 163, and iterating expectation with respect

to x we obtain:

∆r = δ0
P (Di = 1 | xi = 0)[1 − P (Di = 1 | xi = 0)]P (xi = 0)

E{P (Di = 1 | xi)[1 − P (Di = 1 | xi)]}
(165)

+ δ1
P (Di = 1 | xi = 1)[1 − P (Di = 1 | xi = 1)]P (xi = 1)

E{P (Di = 1 | xi)[1 − P (Di = 1 | xi)]}
.

• The weights are proportioal to the variance of treatment status at each

value of the covariate.

• Zero weight is given to cells in which the probability of treatment is zero.

Note, in fact, that the variance of treatment given x is

(P (Di = 1 | xi)[1 − P (Di = 1 | xi)]

and is highest when the probability of treatment given x is 0.5.

• Regression gives more weights to cells in which the proportion of treated

and non treated is similar.

• Matching gives more weights to cells in which the proportion of treated

is high.

Angrist (1998) gives an interesting example of the differences between match-

ing and regression.
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Are matching and regression feasible: the dimensionality problem

It is evident, however, that the inclusion in a regression of a full set of non-

parametric interactions between all the observables may not be feasible when

the sample is small, the set of covariates is large and many of them are
multivalued, or, worse, continue.

This dimensionality problem is likely to jeopardize also the matching strategy

described by equations 157 and 158:

• With K binary variables the number of cells is 2K and grows exponen-

tially with K.

• The number of cell increases further if some variables in X take more
than two values.

• If the number of cells is very large with respect to the size of the sample

it is very easy to encounter situations in which there are:

– cells containing only treated and/or

– cells containing only controls.

Hence, the average treatment effect for these cells cannot be computed.

Rosenbaum and Rubin (1983) propose an equivalent and feasible estimation

strategy based on the concept of Propensity Score and on its properties which

allow to reduce the dimensionality problem.

It is important to realize that regression with a not saturated model is not a

solution and may lead to seriously misleading conclusions.

(Figure: linear regression with non-overlapping samples of treated and con-

trols).
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5.5 Matching based on the Propensity Score

Definition 7 Propensity Score (Rosenbaum and Rubin, 1983)
The propensity score is the conditional probability of receiving the treatment

given the pre-treatment variables:

p(X) ≡ Pr{D = 1|X} = E{D|X} (166)

The propensity score has two important properties:

Lemma 1 Balancing of pre-treatment variables given the propensity score
(Rosenbaum and Rubin, 1983)

If p(X) is the propensity score

D ⊥ X | p(X) (167)

Proof:
First:

Pr{D = 1|X, p(X)} = E{D|X, p(X)} (168)

= E{D|X} = Pr{D = 1|X}
= p(X)

Second:

Pr{D = 1|p(X)} = E{D|p(X)} (169)

= E{E{D|X, p(X)}|p(X)} = E{p(X)|p(X)}
= p(X)

Hence:
Pr{D = 1|X, p(X)} = Pr{D = 1|p(X)} (170)

which implies that conditionally on p(X) the treatment and the observables

are independent. QED.
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Lemma 2 Unconfoundedness given the propensity score (Rosenbaum and

Rubin, 1983)

Suppose that assignment to treatment is unconfounded, i.e.

Y (1), Y (0) ⊥ D | X

Then assignment to treatment is unconfounded given the propensity score, i.e

Y (1), Y (0) ⊥ D | p(X) (171)

Proof: First:

Pr{D = 1|Y (1), Y (0), p(X)} = E{D|Y (1), Y (0), p(X)} (172)

= E{E{D|X, Y (1), Y (0)}|Y (1), Y (0), p(X)}
= E{E{D|X}|Y (1), Y (0), p(X)}
= E{p(X)|Y (1), Y (0), p(X)}
= p(X)

where the step from the second to the third line uses the unconfoundedness

assumption. Furthermore, because of Lemma 1

Pr{D = 1|p(X)} = p(X) (173)

Hence

Pr{D = 1|Y (1), Y (0), p(X)} = Pr{D = 1|p(X)} (174)

which implies that conditionally on p(X) the treatment and potential out-

comes are independent. QED.
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Average effects of treatment and the propensity score

Using the propensity score and its properties we can now match cases and

controls on the basis of a monodimensional variable (the propensity score)

instead of the multidimensional vector of observables X .

E{Yi(0)|Di = 0, p(Xi)} = E{Yi(0)|Di = 1, p(Xi)} = E{Yi(0)|p(Xi)} (175)

E{Yi(1)|Di = 0, p(Xi)} = E{Yi(1)|Di = 1, p(Xi)} = E{Yi(1)|p(Xi)} (176)

Using these expressions, we can define for each cell defined by p(X)

δp(x) ≡ E{∆i|p(Xi)} (177)

≡ E{Yi(1) − Yi(0)|p(Xi)}
≡ E{Yi(1)|p(Xi)} − E{Yi(0)|p(Xi)}
= E{Yi(1)|Di = 1, p(Xi)} − E{Yi(0)|Di = 0, p(Xi)}
= E{Yi|Di = 1, p(Xi)} − E{Yi|Di = 0, p(Xi)}.

Using the Law of Iterated expectations, the average effect of treatment on

the treated is given by:

τ = E{∆i|Di = 1} (178)

= E{E{∆i|Di = 1, p(Xi)}|Di = 1}
= E{ E{Yi(1)|Di = 1, p(Xi)} − E{Yi(0)|Di = 0, p(Xi)} |Di = 1}
= E{δp(x)|Di = 1}

where the outer expectation is over the distribution of p(Xi)|Di = 1.
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5.5.1 Implementation of the estimation strategy

To implement the estimation strategy suggested by the propensity score and
its properties two sequential steps are needed.

i. Estimation of the propensity score
This step is necessary because the “true” propensity score is unknown

and therefore the propensity score has to be estimated.

ii. Estimation of the average effect of treatment given the propensity score

Ideally in this step, we would like to

• match cases and controls with exactly the same (estimated) propen-

sity score;

• compute the effect of treatment for each value of the (estimated)

propensity score (see equation 177).

• obtain the average of these conditional effects as in equation 178.

This is unfeasible in practice because it is rare to find two units with
exactly the same propensity score.

There are, however, several alternative and feasible procedures to per-

form this step:

• Stratification on the Score;

• Nearest neighbour matching on the Score;

• Radius matching on the Score;

• Kernel matching on the Score;

• Weighting on the basis of the Score.
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5.5.2 Estimation of the propensity score

Apparently, the same dimensionality problem that prevents the estimation
of treatment effects should also prevent the estimation of propensity scores.

This is, however, not the case thanks to the balancing property of the propen-

sity score (Lemma 1) according to which:

• observations with the same propensity score have the same distribution

of observable covariates independently of treatment status;

• for given propensity score assignment to treatment is random and there-

fore treated and control units are on average observationally identical.

Hence, any standard probability model can be used to estimate the propensity

score, e.g. a logit model:

Pr{Di = 1|Xi} =
eλh(Xi)

1 + eλh(Xi)
(179)

where h(Xi) is a function of covariates with linear and higher order terms.

The choice of which higher order terms to include is determined solely by the

need to obtain an estimate of the propensity score that satisfies the balancing

property.

Inasmuch as the specification of h(Xi) which satisfies the balancing property
is more parsimonious than the full set of interactions needed to match cases

and controls on the basis of observables (as in equations 157 and 158), the

propensity score reduces the dimensionality of the estimation problem.

Note that, given this purpose, the estimation of the propensity scores does
not need a behavioural interpretation.
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An algorithm for estimating the propensity score

i. Start with a parsimonious logit or probit function to estimate the score.

ii. Sort the data according to the estimated propensity score (from lowest

to highest).

iii. Stratify all observations in blocks such that in each block the estimated

propensity scores for the treated and the controls are not statistically

different:

(a) start with five blocks of equal score range {0 − 0.2, ..., 0.8 − 1};
(b) test whether the means of the scores for the treated and the controls

are statistically different in each block;

(c) if yes, increase the number of blocks and test again;

(d) if no, go to next step.

iv. Test that the balancing property holds in all blocks for all covariates:

(a) for each covariate, test whether the means (and possibly higher or-
der moments) for the treated and for the controls are statistically

different in all blocks;

(b) if one covariate is not balanced in one block, split the block and test

again within each finer block;

(c) if one covariate is not balanced in all blocks, modify the logit esti-
mation of the propensity score adding more interaction and higher

order terms and then test again.

Note that in all this procedure the outcome has no role.

See the STATA program pscore.ado downloadable at

http://www.iue.it/Personal/Ichino/Welcome.html

108



Some useful diagnostic tools

As we argued at the beginning of this section, propensity score methods are

based on the idea that the estimation of treatment effects requires a careful

matching of cases and controls.

If cases and controls are very different in terms of observables this matching

is not sufficiently close and reliable or it may even be impossible.

The comparison of the estimated propensity scores across treated and con-

trols provides a useful diagnostic tool to evaluate how similar are cases and
controls, and therefore how reliable is the estimation strategy.

More precisely, it is advisable to:

• count how many controls have a propensity score lower than the mini-

mum or higher than the maximum of the propensity scores of the treated.

– Ideally we would like that the range of variation of propensity scores

is the same in the two groups.

• generate histograms of the estimated propensity scores for the treated

and the controls with bins corresponding to the strata constructed for
the estimation of propensity scores.

– Ideally we would like an equal frequency of treated and control in
each bin.

Note that these fundamental diagnostic indicators are not computed in stan-
dard regression analysis, although they would be useful for this analysis as

well. (See Dehejia and Wahba, 1999).

109



5.5.3 Estimation of the treatment effect by Stratification on the Score

This method is based on the same stratification procedure used for estimating
the propensity score. By construction, in each stratum the covariates are

balanced and the assignment to treatment is random.

Let T be the set of treated units and C the set of control units, and Y T
i and

Y C
j be the observed outcomes of the treated and control units, respectively.

Letting q index the strata defined over intervals of the propensity score, within
each block we can compute

τS
q =

∑
i∈I(q) Y T

i

NT
q

−
∑

j∈I(q) Y C
j

NC
q

(180)

where I(q) is the set of units in block q while NT
q and NC

q are the numbers

of treated and control units in block q.

The estimator of the ATT in equation 178 is computed with the following

formula:

τS =
Q∑

q=1
τS
q

∑
i∈I(q) Di
∑

∀i Di
(181)

where the weight for each block is given by the corresponding fraction of

treated units and Q is the number of blocks.

Assuming independence of outcomes across units, the variance of τS is given

by

V ar(τS) =
1

NT


V ar(Y T

i ) +
Q∑

q=1

NT
q

NT

NT
q

NC
q

V ar(Y C
j )


 (182)

In the program atts.ado, standard errors are obtained analytically using the

above formula, or by bootstrapping using the bootstrap STATA option. See

http://www.iue.it/Personal/Ichino/Welcome.html
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Comments and extensions

• Irrelevant controls

If the goal is to estimate the effect of treatment on the treated the

procedure should be applied after having discarded all the controls with
a propensity score higher than the maximum or lower than the minimum

of the propensity scores of the treated.

• Penalty for unequal number of treated and controls in a block

Note that if there is a block in which the number of controls is smaller

than the number of treated, the variance increases and the penalty is
larger the larger the fraction of treated in that block. If NT

q = NC
q the

variance simplifies to:

V ar(τS) =
1

NT

[
V ar(Y T

i ) + V ar(Y C
j )

]
(183)

• Alternatives for the estimation of average outcomes within blocks

In the expressions above, the outcome in case of treatment in a block

has been estimated as the average outcome of the treated in that block
(and similarly for controls).

Another possibility is to obtain these outcomes as predicted values from

the estimation of linear (or more sophisticated) functions of propensity

scores.

The gains from using these more sophisticated techniques do not appear

to be large. (See Dehejia and Wahba, 1996.)
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5.5.4 Estimation of the treatment effect by Nearest Neighbor, Radius and Ker-
nel Matching

Ideally, we would like to match each treated unit with a control unit having

exactly the same propensity score and viceversa.

This exact matching is, however, impossible in most applications.

The closest we can get to an exact matching is to match each treated unit

with the nearest control in terms of propensity score.

This raises however the issue of what to do with the units for which the

nearest match has already been used.

We describe here three methods aimed at solving this problem.

• Nearest neighbour matching with replacement;

• Radius matching with replacement;

• Kernel matching
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Nearest and radius matching with replacement for the ATT

The steps for the nearest neighbor matching method are as follows:

• For each treated unit find the nearest control unit.

• If the nearest control unit has already been used for a treated unit, use

it again (replacement).

• Drop the unmatched controlled units.

• In the end you should have a sample of NT pairs of treated and control

units. Treated units appear only once while control units may appear

more than once.

The steps for the radius matching method are as follows:

• For each treated unit find all the control units whose score differs from

the score of the treated unit by less than a given tolerance level r chosen
by the researcher.

• Allow for replacement of control units.

• When a treated unit has no control within the radius r take the nearest

control.

• Drop the unmatched control units.

• In the end you should have a sample of NT treated unites and NC control

units some of which are used more than once as matches .
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Formally, denote by C(i) the set of control units matched to the treated unit

i with an estimated value of the propensity score of pi.

Nearest neighbor matching sets

C(i) = min
j

‖ pi − pj ‖, (184)

which is a singleton set unless there are multiple nearest neighbors.

In radius matching,

C(i) = {pj | ‖ pi − pj ‖< r} , (185)

i.e. all the control units with estimated propensity scores falling within a
radius r from pi are matched to the treated unit i.

Denote the number of controls matched with observation i ∈ T by NC
i and

define the weights wij = 1
NC

i
if j ∈ C(i) and wij = 0 otherwise.

The formula for both types of matching estimators can be written as follows

(where M stands for either nearest neighbor matching or radius matching):

τM =
1

NT

∑

i∈T


Y T

i −
∑

j∈C(i)
wijY

C
j


 (186)

=
1

NT




∑

i∈T

Y T
i −

∑

i∈T

∑

j∈C(i)
wijY

C
j


 (187)

=
1

NT

∑

i∈T

Y T
i − 1

NT

∑

j∈C

wjY
C
j (188)

where the weights wj are defined by wj = Σiwij. The number of units in the

treated group is denoted by NT .
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To derive the variances of these estimators the weights are assumed to be

fixed and the outcomes are assumed to be independent across units.

V ar(τM ) =
1

(NT )2


∑

i∈T

V ar(Y T
i ) +

∑

j∈C

(wj)
2V ar(Y C

j )


 (189)

=
1

(NT )2


NTV ar(Y T

i ) +
∑

j∈C

(wj)
2V ar(Y C

j )


 (190)

=
1

NT
V ar(Y T

i ) +
1

(NT )2

∑

j∈C

(wj)
2V ar(Y C

j ). (191)

Note that there is a penalty for overusing controls.

In the STATA programs attnd.ado, attnw.ado, and attr.ado, standard errors
are obtained analytically using the above formula, or by bootstrapping using

the bootstrap option. See

http://www.iue.it/Personal/Ichino/Welcome.html

The difference between attnd.ado and attnw.ado has to do with the program-
ming solutions adopted to compute the weights (see the documentation of

the programs).
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Estimation of the treatment effect by Kernel matching

The kernel matching estimator can be interpreted as a particular version of

the radius method in which every treated unit is matched with a weighted

average of all control units with weights that are inversely proportional to
the distance between the treated and the control units.

Formally the kernel matching estimator is given by

τK =
1

NT

∑

i∈T




Y T

i −
∑

j∈C Y C
j G(pj−pi

hn
)

∑
k∈C G(pk−pi

hn
)





(192)

where G()̇ is a kernel function and hn is a bandwidth parameter.

Under standard conditions on the bandwidth and kernel
∑

j∈C Y C
j G(

pj−pi

hn
)

∑
k∈C G(pk−pi

hn
)

(193)

is a consistent estimator of the counterfactual outcome Y0i.

In the program attk.ado, standard errors are obtained by bootstrapping using

the bootstrap option. See

http://www.iue.it/Personal/Ichino/Welcome.html
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5.5.5 Estimation of the treatment effect by Weighting on the Score

This method for the estimation of treatment effects is suggested by the fol-
lowing lemma, where the ATE is the average effect of treatment in the pop-

ulation.

Lemma 3 ATE and Weighting on the propensity score

Suppose that assignment to treatment is unconfounded, i.e.

Y (1), Y (0) ⊥ D | X

Then

ω = E{Yi(1)} − E{Yi(0)} = E





YiDi

p(Xi)



 − E





Yi(1 − Di)

1 − p(Xi)



 (194)

Proof: Using the law of iterated expectations:

E





YiDi

p(Xi)



 − E





Yi(1 − Di)

1 − p(Xi)



 = E



E





YiDi

p(Xi)
|X



 − E





Yi(1 − Di)

1 − p(Xi)
|X









(195)

which can be rewritten as:

E



E





Yi(1)

p(Xi)
|Di = 1, X



 Pr{Di = 1|X} − E





Yi(0)

1 − p(Xi)
|Di = 0, X



 Pr{Di = 0|X}





(196)

Using the definition of propensity score and the fact that unconfoundedness

makes the conditioning on the treatment irrelevant in the two internal expec-
tations, this is equal to:

E{E{Yi(1)|X} − E{Yi(0)|X}} = E{Yi(1)} − E{Yi(0)} (197)

QED

Therefore, substituting sample statistics in the RHS of 194 we obtain an

estimate of the ATE.
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A similar lemma suggests a weighting estimator for the ATT.

Lemma 4 ATT and weighting on the propensity score
Suppose that assignment to treatment is unconfounded, i.e.

Y (1), Y (0) ⊥ D | X

Then

τ = {E{Yi(1)|Di = 1} − E{Yi(0)|Di = 1}} (198)

= E{YiDi} − E



Yi(1 − Di)

p(Xi)

1 − p(Xi)





Proof: Using the law of iterated expectations:

E{YiDi}−E



Yi(1 − Di)

p(Xi)

1 − p(Xi)



 = E



E{YiDi|X} − E



Yi(1 − Di)

p(Xi)

1 − p(Xi)
|X









(199)
which can be rewritten as:

E



E{Yi(1)|Di = 1, X}Pr{Di = 1|X} − E



Yi(0)

p(Xi)

1 − p(Xi)
|Di = 0, X



 Pr{Di = 0|X

(200)
Using the definition of propensity score and the fact that unconfoundedness

makes the conditioning on the treatment irrelevant in the two internal expec-

tations, this is equal to:

E{E{Yi(1)|Di = 1, X} − E{Yi(0)|Di = 1, X}|Di = 1} (201)

= E{Yi(1)|Di = 1} − E{Yi(0)|Di = 1}

where the outer expectation in the first line is over the distribution of Xi|Di =
1.

QED

Substituting sample statistics in the RHS of 198 we obtain an estimate of the

ATT. Note the different weighting function with respect to the ATE.
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• A potential problem of the weighting method is that it is sensitive to

the way the propensity score is estimated.

• The matching and stratification methods are instead not sensitive to the

specification of the estimated propensity score.

• An advantage of the weighting method is instead that it does not rely

on stratification or matching procedures.

• It is advisable to use all methods and compare them: big differences

between them could be the result of

– mis-specification of the propensity score;

– failure of the unconfoundedness assumption;

• The computation of the standard error is problematic because the propen-

sity score is estimated. Hirano, Imbens and Ridder (2000) show how

to compute the standard error See also Heckman, Ichimura and Todd
(1998) and Hahn (1998).
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5.6 Recent developments

5.6.1 A panel-asymptotic framework to compare propensity score and covariate
matching ( Angrist and Hahn, 2000)

Propensity score matching may help to solve the dimensionality problem, but
there appear to be no formal statistical theory to justify this method.

Standard asymptotic theory says that as long as E{Y | X} varies with X

efficient estimation should match on X not just on the propensity score.

This paper:

• Provides a framework to resolve the puzzle based on an asymptotic se-

quence that looks similar to the one used for “panel data”: i.e. keeping
fixed the number of observations per cells but increasing the number of

cells.

• Provides guidelines to decide when propensity score matching is better

than covariates matching.

• Proposes a more efficient random-effect-type estimator.

Note, however, that propensity score matching remains the only feasible so-

lution when the dimensionality problem is otherwise unsolvable (e.g. in case

of continues covariate).
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Assume that:

• Covariates Xi define K possible cells (hence no continues covariate).

• (Y0ki, Y1ki) are the potential outcomes and Dki is the treatment for indi-
vidual i in cell k, so that

Yki ≡ DkiY1i + (1 − Dki)Y0i

is the observed outcome for the same individual.

• The treatment is ignorable given covariates

(Y0i, Y1i)⊥Di | Xi.

• The propensity score is constant: P (Di = 1 | X) = π. Note that this
assumption is meant to go to the heart of the comparison between the

two methods which has to do with what happens when the score is

constant but E{Y | X} is not.

• Each cell has equal size M .

The model

Yki = αk + βDki + εki, (202)

where k = 1, ..., K and i = 1, ...,M , is a random effect model.

Note that because of unconfoundedness the individual specific error term εki

is white noise and random effect estimation of this model is consistent.
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In this setting:

• covariates matching is equivalent to a panel estimation with fixed effects

for each cell.

• propensity score matching is equivalent to an OLS estimation pooling all

observations, because the propensity score is fixed and constant across

individuals.

However, we know from the theory of panel estimation that none of these

two methods is efficient, although they are both consistent.

Efficieny is achieved by a random effect estimator which is a weighted average

of between (or pooled) and within estimators.

The paper:

• shows how this efficient random effect estimator can be constructed;

• compares the two inefficient estimators using Panel-asymptotic simula-

tions and Monte Carlo experiments.

The comparison suggests that the relative efficiency of propensity score match-

ing increases:

• if the R2 of the regression on the covariates Xi decreases;

• if the cell size M falls;

• if the propensity score π falls;

and there are combinations of (π,M, R2) for which propensity score matching

is more efficient.
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5.7 Comments on matching methods.

• The validity of matching methods depend on the quality of the observ-
able covariates on which the matching can be constructed.

• It is crucial to be able to control in a convincing way for the pre-
treatment history of the units under studies.

• Matching methods should be wiewed as a bias reducing strategy.

• Matching methods offer also a wide range of useful self diagnostic tools.

• Propensity score matching is “philosophically” not different from stan-
dard matching, but is crucial to to solve the dimensionality problem.

The debate between the “Quasi-Experimental” and the “Non-Experimental”

approaches to the estimation of causal effects is still open. Heckman and

Hotz (1989) and the comments by Holland and Moffit in the same JASA
issue present the terms of the debate in a very clear way.

• Causal inference in non-randomized studies requires more data than in

randomized studies.

• Causal inference in non-randomized studies requires more assumptions

than in randomized studies.

Is the future featuring more “cooperation” instead of “contrapposition” be-

tween approaches?

• An interesting example: the Difference in Difference Matching Estima-

tor of Heckman, Ichimura and Todd (1997, 1998), Heckman, Ichimura,
Smith and Todd (1998) and Smith and Todd (2000).
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6 Appendix

6.1 Standard characteriziation of IV

Consider the model
Y = α + ∆D + ε (203)

in which E{ε} = 0 but COV {ε,D} 6= 0. In this situation,

plim{∆̂OLS} =
COV {Y, D}

V {D}
= ∆ +

COV {ε,D}
V {D}

6= ∆ (204)

and OLS gives an inconsistent estimate of ∆.

Consider a variable Z such that:

E{D | Z} 6= 0 ⇒ COV {Z, D} 6= 0 (205)

E{ε | Z} = 0 ⇒ COV {Z, ε} = 0. (206)

If this variable exists, the following population equation holds (see also the
Appendix 6.2 in the next page):

COV {Y, Z}
COV {D, Z}

= ∆ +
COV {ε, Z}
COV {D, Z}

= ∆ = plim{∆̂IV } (207)

Substituting the appropriate sample covariances on the LHS of 207 we get

the consistent estimator ∆̂IV .

Examples:

• Estimation of supply and demand.

• Other simultaneous equations models.

• Omitted variables.

• Measurement error

• ...

The problem is to find the variable z.
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6.2 Derivation of the IV-2SLS estimator in matrix notation

Consider the following model

Y = D∆ + ε (208)

D = Zγ + u (209)

where D and Z are conformables matrices which include constant terms and
COV {D, ε} 6= 0 and COV {Z, ε} = COV {Z, U} = 0.

Note that

D̂ = Z(Z ′Z)−1Z ′D = PZD (210)

is the predicted value of D given Z, where PZ = Z(Z ′Z)−1Z ′ is the core-
sponding projection matrix.

OLS estimation of the transformed equation

PZY = PZD∆ + PZε (211)

gives

∆̂ = (D′PZPZD)−1D′PZPZY (212)

= (D′PZD)−1D′PZY

= (D′Z)−1Z ′Y → COV {Y, Z}
COV {D, Z}

which is the IV estimator.
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6.3 Equivalence between IV and Wald estimators

Consider the setup of Section 2 in which the outcome is Yi and the treatment
is binary: Di = 0, 1. Suppose also that the instrument is binary as well:

Zi = 0, 1. It can be easily checked (see next page) that:

COV {Y, Z}
COV {D, Z}

=
E{Yi | Zi = 1} − E{Yi | Zi = 0}

Pr{Di = 1 | Zi = 1} − Pr{Di = 1 | Zi = 0}
(213)

The RHS of 213 is also known as the Wald estimator (see Angrist, 1990) that

is constructed on the basis of expectations of outcomes taken conditioning

on different realizations of the instrument. Here is another way to derive it.

Suppose that we are trying to estimate ∆∗ = E{∆i} in equation 23 which is

reported here for convenience

Yi = µ(0) + E{∆i}Di + εi.

We can take the following two conditional expectations:

E{Yi | Zi = 1} = µ(0) + ∆∗E{Di | Zi = 1} + E{εi | Zi = 1} (214)

E{Yi | Zi = 0} = µ(0) + ∆∗E{Di | Zi = 0} + E{εi | Zi = 0} (215)

Assuming that the instrument Z satisfies the condition 206, so that the con-
ditional expectations of the errors are zero:

E{Yi | Zi = 1} = µ(0) + ∆∗Pr{Di = 1 | Zi = 1} (216)

E{Yi | Zi = 0} = µ(0) + ∆∗Pr{Di = 1 | Zi = 0} (217)

Subtracting 217 from 216 and solving for ∆∗ gives the Wald-IV estimator on

the RHS of 213.
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A formal proof of the result of the previous page follows.

∆W =
E {Y | Z = 1} − E {Y | Z = 0}

Pr {D = 1 | Z = 1} − Pr {D = 1 | Z = 0} = Wald estimator

∆IV =
COV {Y, Z}
COV {D, Z} =

E {Y Z} − E{Y }E{Z}
E {DZ} − E{D}E{Z} = IV estimator =

=
E {Y | Z = 1}Pr {Z = 1} − E{Y }Pr{Z = 1}
Pr {D = 1, Z = 1} − Pr{D = 1}Pr{Z = 1}

= Pr{Z = 1} E {Y | Z = 1} − E{Y | Z = 1}Pr{Z = 1} − E{Y | Z = 0}Pr{Z = 0}
Pr {D = 1, Z = 1} − [Pr {D = 1, Z = 1}+ Pr {D = 1, Z = 0}]Pr{Z = 1}

= Pr{Z = 1} E{Y | Z = 1} [1− Pr{Z = 1}]− E{Y | Z = 0}Pr{Z = 0}
Pr {D = 1, Z = 1} [1 − Pr{Z = 1}]− Pr {D = 1, Z = 0}Pr {Z = 1}

= Pr{Z = 1} Pr {Z = 0} [E {Y | Z = 1} − E {Y | Z = 0}]
Pr {D = 1 | Z = 1}Pr {Z = 1}Pr {Z = 0} − Pr {D = 1 | Z = 0}Pr{Z = 0}Pr{Z = 1}

=
E{Y | Z = 1} − E{Y | Z = 0}

Pr {D = 1 | Z = 1} − Pr {D = 1 | Z = 0} = ∆W

Q.E.D.
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