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1 Introduction

The scope of econometrics:

• To design and estimate statistical models of relationships between socio-
economic variables.

• To establish under what conditions these relationships have a causal inter-
pretation.

Some examples from Wooldridge-Chapter 1. and ... your own research work:

• Education and earnings

• Law enforcement and city crime levels

• Fertilizer and Crop Yield

• Minimum wage and unemployment

• Job training and productivity

• ...
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1.1 The tool-box of econometrics

i. A well defined question and the population for which it matters.

ii. The ideal experiment we would like to run in order to answer the question.

iii. A feasible strategy to address the question in the absence of the ideal exper-
iment.

iv. An accessible sample of data from the population of interest:

• Cross-sectional data

• Time-series data

• Panel data

• Examples from Wolrdridge-Chapter 1

v. The model of statistical inference (Rubin, 1991): how to infer from the sam-
ple the population relationship between variables in which we are interested.
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1.2 The econometric sequence at the LMEC

This initial course is devoted to the most standard tools of econometrics.

• The simple regression model;

• Multiple regression analysis.

Then the sequence splits between:

• Time-series-econometrics:
two courses devoted to the study of models for time series data and panel
data “with large t and small n”.

• Micro-econometrics:
two courses devoted to the study of models for cross-sectional and panel data
“with small t and large n”.

The last course in the micro-econometric sequence is specifically dedicated to
methods for the identification and estimation of causal relationships.
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2 The simple regression model

Consider:

• an outcome variable y: e.g. labor earnings;

• a variable x which we consider as a possible determinant of y in which we
are interested: e.g. years of education;

• a variable e which describes all the other determinants of y that we do not
observe.

The general notation for the model that relates y, x and e is

y = f(x, e) (1)

We are interested in the relationship between x and y in the population, which
we can study from two perspectives:

i. To what extent knowing x allows us to “predict something” about y.

ii. Whether ∆x “causes” ∆y given a proper definition of causality.

4



2.1 Regression and the Conditional Expectation Function

We deviate slightly from Wooldridge and follow Angrist and Pischke (2008) to
show that Regression, independently of causality, is a useful tool within the first
perspective because of its link with the Conditional Expectation Function.

We can always decompose 1 in the following way:

y = E(y|x) + ε (2)

where E(y|x) is the Conditional Expectation Function (CEF) of y given x, and
ε = y − E(y|x) is by construction:

• mean independent of x:

E(ε|x) = E(y − E(y|x)|x) = E(y|x) − E(y|x) = 0 (3)

• is uncorrelated with any function of x, i.e. for any h:

E(h(x)ε) = E(h(x)E(ε|x)) = 0 (4)

Here is an example of the CEF of labor earnings given education in the US.

5



Properties of the Conditional Expectation Function

The CEF provides useful information because of some interesting properties.

Property 1. Let m(x) be any function of x. The CEF solves

E(y|x) = arg min
m(.)

E
[
(y −m(x))2

]
(5)

The CEF minimizes the Mean Square Error of the prediction of Y given X.

Property 2.

V (y) = V (E(y|x)) + V (ε) (6)

= V (E(y|x)) + E(V (y|x))

The variance of y can be decomposed in the variances of the CEF and of ε.

Exercise: prove the two properties.

6



2.2 The Population Regression Function

We do not know the CEF but we can show that the Population Regression
Function (PRF) is a “good” approximation to the true CEF.

The PRF is the linear function

yp = β0 + β1x (7)

such that β0 and β1 minimize the square of the residual distance u = y− yp in
the population, i.e. the “distance” between y and the PRF line itself:

(β0, β1) = arg min
b0,b1

E
[
(y − b0 − b1x)2

]
(8)

The First Order conditions of problem 8 are:

E [x(y − b0 − b1x)] = 0 (9)

E [(y − b0 − b1x)] = 0

7



The parameters of the Population Regression Function

The solutions are:

β1 =
E[x(y − β0)]

E(x2)
=
Cov(y, x)

V (x)
(10)

β0 = E(y) − β1E(x) (11)

Note that by definition of β0 and β1:

y = yp + u = β0 + β1x + u (12)

and
E(xu) = E[x(y − β0 − β1x)] = 0 (13)

In words, the PRF is the linear function of x that makes the residuals u uncor-
related with x in the population.

8



Properties of the Population Regression Function

The PRF is linked to the CEF by some interesting properties:

Property 3. If the CEF is linear then the PRF is the CEF. This happens,
specifically:

• when y and x are jointly normally distributed;

• in a fully saturated model (to be defined below in the context of multiple
regression)

Property 4. The PRF is the best linear predictor of y in the sense that
it minimizes the Mean Square Error of the prediction.

Property 5. The PRF is the best linear approximation to the CEF in
the sense that it minimizes the Mean Square Error of the approximation.

Exercise: prove these properties.

9



Parenthesis: an informative exercise

Take any dataset and assume that this is your entire population

Define the variables of interest y and x.

Estimate the linear regression of y on x.

Compute ȳ = E(y|x) and estimate the linear regression ȳ on x.

Compare the results of the two estimations and comment on your findings.

In which sense the properties of the CEF and the PRF are relevant for your
findings?

Could this result be useful whenever data providers do not want to release
individual observations?

10



What have we accomplished so far by this way of reasoning?

If we are simply interested in predicting y given x it would be useful to know
the correspondent CEF because of its properties.

We do not know the CEF but the PRF is the best linear approximation to the
CEF and the best linear predictor of y given x .

If we had data for the entire population we could then use the PRF, which we
can characterize precisely, to predict y given x.

Usually, however, we have (at best) a random sample of the population.

We now have to show that the Sample Regression Function (SRF) is a “good”
estimate of the Population Regression Function according to some criteria.

This is an inference problem.

11



“Repetita juvant”: again on the orthogonality condition

By saying that our goal is to estimate the PRF and that the PRF is defined as:

yp = β0 + β1x (14)

where the parameters satisfy by construction:

(β0, β1) = arg min
b0,b1

E
[
(y − b0 − b1x)2

]
(15)

the condition
E(xu) = E[x(y − β0 − β1x)] = 0 (16)

is not a necessary assumption for regression to make sense (as in standard
econometrics): it follows instead from the definition β0 and β1 and, as we will
see below, it ensures that:

• The OLS-MM estimator is by definition “consistent for the PRF”;

• and unbiased in some important special cases.

Note: at this stage the PRF does not have a causal interpretation, which requires
a definition of causality and assumptions that will be discussed in Section 2.7.

12



2.3 From the Sample Regression Function to the Population Regression Function

Now suppose that we have a random sample of the population

Definition 1. If {z1...zi...zn} are independent draws from a population
with density function f(z,θ), then {z1...zi...zn} is a random sample from
the population defined by f(z,θ). Note that each draw is a random variable.

Exercise: make sure that you understand the meaning of random sampling.

We want to know whether the sample analogs of

β1 =
Cov(y, x)

V (x)
and β0 = E(y) − β1E(x) (17)

which (denoting sample averages with ȳ = 1
n

∑n
i=1 yi and x̄ = 1

n

∑n
i=1 xi) are:

β̂1 =
1
n

∑n
i=1(yi − ȳ)(xi − x̄)

1
n

∑n
i=1(xi − x̄)2

and β̂0 = ȳ − β̂1x̄, (18)

can be considered as “good” estimators of β1 and β0 under some criteria to be
defined.
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Why should we focus on the sample analog of β1 (or β0)?

An “estimator” is a function (a “recipe”) of the sample of data which originates
an “estimate” (a “cake”) when the actual sample draws (the ”ingredients”) are
combined in the way suggested by the estimator.

The “quality” of the estimate (the “cake”) depends on the properties of the
estimator (the “recipe”) and on the caracteristics of the actual sample (the
“ingredients”).:

Before analysing the properties of β̂1 let’s consider three justifications for think-
ing about this specific recipe among the many we could have considered.

The “cakes” we would like to obtain are the parameters β0 and β1 of the PRF
defined as the fitted line that minimizes residuals from y in the population.

We are asking whether the slope β̂1 of the sample fitted line (SRF) “approaches”
the “cake we would like to have”, which is β1. (Same for β0)

14



2.3.1 The “Method of Moment” justification of β̂0 and β̂1

The “Methods of Moments” constructs estimators on the basis of restrictions
concerning moments of the population that should be satisfied also in the sample
(under random sampling), given the definition of the parameters to be estimated.

The definition of the PRF parameters that we have given implies that the fol-
lowing two moment conditions should hold in the data

E(u) = E [y − β0 − β1x] = 0 (19)

E(xu) = E [x(y − β0 − β1x)] = 0 (20)

Given random sampling (i.e. if the sample is a scaled down but perfect image
of the population), these two conditions should hold also in the sample.

15



The moment conditions in the sample

The analogs of the population moment conditions in the sample are:

1

n

n∑

i=1

(yi − β̂0 − β̂1xi) = 0 and
1

n

n∑

i=1

xi(yi − β̂0 − β̂1xi) = 0 (21)

With simple algebra in Wooldridge-Chapter2 one can derive the Method of
Moment estimators for β1 and β0:

β̂1 =
1
n

∑n
i=1(yi − ȳ)(xi − x̄)

1
n

∑n
i=1(xi − x̄)2

and β̂0 = ȳ − β̂1x̄, (22)

Pay attention to an important necessary condition for the construction of these
estimators

1

n

n∑

i=1

(xi − x̄)2 > 0 (23)

What does this mean for your research question and your empirical work?

16



2.3.2 The “Least Squares” justification of β̂0 and β̂1

An equivalent justification of β̂0 and β̂1 is that they should be chosen in a way
such that the SRF minimizes the sum of squared residuals in the sample, i.e.
the distance between the sample observations and the SRF itself.

The PRF minimizes the sum of squared residual in the population, which sug-
gests that it might be good if the SRF achieves the same result in the sample

The Ordinary Least Square estimators β̂0 and β̂1 are constructed as

(β̂0, β̂1) = argmin
b̂0,b̂1

n∑

i=1

[
(yi − b̂0 − b̂1xi)

2
]

(24)

It is easy to check that the FOCs of this problem are de facto identical to 21:
n∑

i=1

(yi − β̂0 − β̂1xi) = 0 and
n∑

i=1

xi(yi − β̂0 − β̂1xi) = 0 (25)

17



The OLS estimators

Since the OLS conditions 25 and the MM conditions 21 are the same, they
deliver the same estimators:

β̂1 =
1
n

∑n
i=1(yi − ȳ)(xi − x̄)

1
n

∑n
i=1(xi − x̄)2

and β̂0 = ȳ − β̂1x̄, (26)

The second order conditions of the minimization problem 24 are satisfied.

The way to do it (see Woodridge-Appendix 2A) is to add and subtract β̂0+β̂1xi
within the squared parentheses in the minimand 24 to get

n∑

i=1

[
(yi − β̂0 − β̂1xi) + (β̂0 − b̂0) + (β̂1xi − b̂1xi)

]2
(27)

Developping the square one can show that the minimum occurs for b̂0 = β̂0 and
b̂1 = β̂1.

18



2.3.3 The “Maximum Likelihood” justification of β̂0 and β̂1 (for future reference)

There is a third way to justify the β̂0 and β̂1 estimators based on the logic of
Maximum Likelihood (ML).

This justification requires the assumption that y is distributed normally.

Thanks to this distributional assumption, in addition to the MM and OLS desir-
able properties that we will discuss below, β̂0 and β̂1 acquire also the properties
of ML estimators.

We will discuss the additional properties of ML estimators later.

Now we just want to show that β̂0 and β̂1 can also be interpreted as ML
estimates, under the assumption of normality.
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The likelihood function

Consider the model
yi = β0 + β1xi + ui (28)

and suppose that :

ui ∼ f(ui|µ, σ2) =
1√

2πσ2
e
−(ui)

2

2σ2 (29)

which implies

yi ∼ f(yi|µ, σ2) =
1√

2πσ2
e
−(yi−β0−β1xi)

2

2σ2 (30)

Assuming an observed set of independent sample draws, the likelihood function
is defined as:

L(y|x, β0, β1, σ
2) =

n∏

i=1

1√
2πσ2

e
−(yi−β0−β1xi)

2

2σ2 (31)

Given a sample of observations yi and xi, L is the probability of observing the
sample given the parameters β0, β1 and σ2.

20



The “Recipe” of maximum likelihood estimation

The ML estimator (the “recipe”) chooses β̂0, β̂1 and σ̂2 as the values of β0, β1
and σ2 that maximize the likelihood, given the observed sample.

{β̂0, β̂1, σ̂
2} = arg min

β0,β1,σ2
L(y|x, β0, β1, σ

2) =

n∏

i=1

1√
2πσ2

e
−(yi−β0−β1xi)

2

2σ2

(32)

Computations simplify if we maximize the log likelihood:

Log[ L (y|x, β0, β1, σ
2)] =

n∑

i=1

log

[
1√

2πσ2
e
−(yi−β0−β1xi)

2

2σ2

]
(33)

= −N
2
log(2π) − N

2
log(σ2) − 1

2

n∑

i=1

(yi − β0 − β1xi)
2

σ2
(34)

21



First Order Conditions for β0 and β1

Maximization of the log likelihood with respect to β0 and β1 implies that:

(β̂0, β̂1) = arg min
β0,β1

n∑

i=1

[
(yi − β0 − β1xi)

2
]

(35)

The FOC’s are identical for the ML, MM and OLS problems ( see 21 and 25):
n∑

i=1

(yi − β̂0 − β̂1xi) = 0 and
n∑

i=1

xi(yi − β̂0 − β̂1xi) = 0 (36)

Solving the FOC we get the same estimator:

β̂1 =
1
n

∑n
i=1(yi − ȳ)(xi − x̄)

1
n

∑n
i=1(xi − x̄)2

and β̂0 = ȳ − β̂1x̄, (37)

And Second Order Conditions can be checked as in the OLS problem.

We defer the analysis of the additional properties of ML estimators to later.
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2.4 Algebraic and geometric properties of the OLS-MM estimators β̂0 and β̂1

• The Sample Regression Function is the set of the fitted values

ŷi = β̂0 + β̂1xi (38)

• The estimated sample residuals û = y − ŷ satisfy:
n∑

i=1

ûi = 0 (39)

n∑

i=1

xiûi = 0 (40)

n∑

i=1

(ŷi − ȳ)ûi = 0 (41)

• A geometric interpretation (see the figure drawn in class) of the OLS-MM
orthogonal decomposition

y = ŷ + û (42)
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A decomposition of the total variation of yi

The OLS-MM estimator decomposes the total variation of yi into a component
explained by xi and a residual unexplained component.

SST = Total Sum of Squares =

n∑

i=1

(yi − ȳ)2 (43)

SSE = Explained Sum of Squares =

n∑

i=1

(ŷi − ȳ)2 (44)

SSR = Residual Sum of Squares =

n∑

i=1

û2 (45)

SST = SSE + SSR (46)

The proof is easy, developping the square in SST and using 41.
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2.5 Goodness of fit and the R-squared

Assuming variability in the sample (SST 6= 0), the R-Squared is defined as

R2 =
SSE

SST
= 1 − SSR

SST
(47)

which takes values between 0 and 1.

The R-squared measures the proportion of the total variation of y that is ex-
plained by x.

It is also a measure of the goodness of fit of the model.

While a low R-squared may appear to be a “bad sign”, we will show later that
x may still be a very important determinant of y even if the R-squared is low.

25



2.6 Three desirable statistical properties of the OLS-MM estimators β̂0 and β̂1

One can think of several properties that an estimator (a “recipe”) should have
in order to produce satisfactory estimates (“cakes”).

At this stage we focus on three of these possible properties.

Note that the estimate is a random variable, because it is a function of the
sample observations which are random variables.

The desirable properties are:

i. Unbiasedness;

ii. Consistency;

iii. Efficiency.

26



2.6.1 Are β̂0 and β̂1 unbiased for β0 and β1 ?

An estimator of some population parameter is unbiased when its expected value
is equal to the population parameter that it should estimate.

The crucial population parameter of interest is the slope of the PRF.

We want to prove that:

E(β̂1|{xi}) ≡ E

(
1
n

∑n
i=1(yi − ȳ)(xi − x̄)

1
n

∑n
i=1(xi − x̄)2

|{xi}

)
=
Cov(y, x)

V (x)
≡ β (48)

To prove this result we need 4 assumptions, three of which have already been
introduced.

Angrist and Pischke (2008) implicitly note, however, that unbiasedness is not
so crucial and we should care for consistency, which (as we will see) does not
require the fourth assumption.

27



The necessary assumptions for the proof

SLR 1: In the population, y is related to x and u as:

y = β0 + β1x + u (49)

SLR 2: The n observations yi and xi are a random sample of the population
and the residual ui is defined by:

yi = β0 + β1xi + ui (50)

SLR 3: The observations {x1, ..., xn} are not all equal

SLR 4: The residual u is mean-independent of x:

E(u|x) = 0 (51)

Note that the definition of β0 and β1 in the PRF implies

E(ux) = 0 (52)

but 52 does not imply 51 (while 51 implies 52).

In Section 2.6.2 we will show that SLR 4 is not needed for consistency, for which
52 is enough.
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What is the “deep” meaning of SLR 4

Suppose that y is earnings, x is years of education and u is the effect of unob-
servable genetic ability A (and nothing else matters for earnings):

u = γA (53)

The assumption that
E(u|x) = 0 (54)

means that the expected effect of genetic ability on earnings is the same at
each given level of education.

The assumption is not satisfied in cases like the following:

• All subjects have the same ability A, but ability has a stronger effect on
earnings at higher education levels: γ > 0 grows with x;

• A unit of ability A has the same effect γ on earnings for everybody, but
subjects with higher education have more ability: A > 0 and grows with x.
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Proof of the unbiasedness of the OLS-MM estimator β̂1

Note first that SLR 3 is needed otherwise β̂1 would not exist.

It is then useful to consider the following general result which is easy to verify
for any random variables zi and wi:

n∑

i=1

(zi − z̄)(wi − w̄) =

n∑

i=1

zi(wi − w̄) =

n∑

i=1

(zi − z̄)wi (55)

Note that this holds also when zi = wi.

Using 55, the fact that
∑n

i=1(xi − x̄) = 0, and SLR 1 and SLR 2 to substitute

for yi , we can rewrite β̂1 as:

β̂1 =

∑n
i=1 yi(xi − x̄)∑n
i=1(xi − x̄)2

=

∑n
i=1(β0 + β1xi + ui)(xi − x̄)∑n

i=1(xi − x̄)2
(56)

= β1 +

∑n
i=1(ui)(xi − x̄)∑n

i=1(xi − x̄)2
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Proof of the unbiasedness of the OLS-MM estimator β̂1 (cont.)

Substituting 56 in 48 and defining the Total Sum of Squared deviation from the
mean of x as

SSTx =

n∑

i=1

(xi − x̄)2 : (57)

we obtain:

E(β̂1|{xi}) = E

(
β1 +

∑n
i=1(ui)(xi − x̄)∑n

i=1(xi − x̄)2
|{xi}

)
(58)

= β1 +
1

SSTx




n∑

i=1

E[ui(xi − x̄)|{xi}]




= β1 +
1

SSTx




n∑

i=1

(xi − x̄)E(ui|{xi})




= β1

The last equality holds because of SLR 4 and random sampling.
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A “situation” in which SLR 4 holds

Consider a population in which no one has taken any education and earnings
are a constant plus the random effect of genetic ability.

y = β0 + u (59)

where (without loss of generality) E(u) = 0.

Extract two random samples from this population and give two different levels
of education x1 and x2 to the two groups.

Since the two random samples are “representative images” of the population

E(u) = E(u|x = x1) = E(u|x = x2) = 0 (60)

Randomized controlled experiments deliver the assumption SLR 4 that we need.

This is analogous to what Wooldridge characterizes as a situation in which xi
is fixed in repeated samples.

The assumption also holds obviously in the case of non-stochastic x.
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A special case: the CEF is the PRF

If y and x are jointly normally distributed:

E(y|x) = β0 + β1x (61)

and in this case the CEF is the PRF because the CEF is linear. In this case, by
definition, u = y − E(y|x) is such that:

E(u|x) = E(y − E(y|x)|x) = E(y|x) − E(y|x) = 0 (62)

When the CEF is linear, SLR 4 is no longer an assumption, because the popu-
lation parameters β0 and β1 that we want to estimate are the ones that ensure
that this condition is satisfied.

This is the assumption of Galton’s study of the intergenerational transmission
of height, in which the word “Regression” was first used. In the regression:

hs = α + βhf + ε (63)

where hj is the height of generation j, Galton estimated that β < 1 which
implies that the child of tall parents will not be as tall as they are, i.e. without
new random shocks “height would regress to the mean” across generations.
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Proof of the unbiasedness of the OLS-MM estimator β̂0 (cont.)

The proof of unbiasedness of β̂0 is straightforward. Taking the sample average
of 50 we get that

ȳ = β0 + β1x̄ + ū (64)

Then, using 26
β̂0 = ȳ − β̂1x̄ = β0 + (β1 − β̂1)x̄ + ū (65)

And therefore:

E(β̂0|x) = β0 + E(β1 − β̂1)x̄|x) + E(ū|x) (66)

= β0

because E(β̂1|x) = E(β1|x) and E(ū|x) = 0.
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2.6.2 Are β̂0 and β̂1 consistent for β0 and β1 ?

An estimator of a population parameter is consistent when the estimates it
produces can be made arbitraily close to the population parameter by increasing
the sample size.

Formally, we say that β̂1 is consistent for β1 if it converges in probability to
β1.

plim β̂1 = β1 (67)

and similarly for β̂0.

To prove consistency we need to use the

Proposition 1. The Law of Large Numbers: Sample moments converge
in probability to the corresponding population moments.

For example, the probability that the sample mean is close to the population
mean can be made as high as one likes by taking a large enough sample.
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Properties of probability limits

Consider a random sample z1...zn

Property 1. For any sample moment θn and continuous function h(.):

plim θn = θ (68)

implies
plim h(θn) = h(θ) (69)

Property 2. Given two sample moments θn and ξn with

plim θn = θ (70)

plim ξn = ξ (71)

we have,

plim (θn + ξn) = θ + ξ (72)

plim (θnξn) = θξ (73)

plim

(
θn
ξn

)
=
θ

ξ
(74)
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Consistency of the OLS-MM estimator

Using 56 we can write:

plim β̂1 = plim

(
β1 +

∑n
i=1(ui)(xi − x̄)∑n

i=1(xi − x̄)2

)
(75)

= β1 +
plim (

∑n
i=1(ui)(xi − x̄))

plim
(∑n

i=1(xi − x̄)2
)

= β1 +
Cov(x, u)

V ar(x)
= β1

where the last equality derives from 16: x and u are uncorrelated because of
the way we defined the PRF and the parameters that we want to estimate.

As a result the OLS-MM estimator may not be unbiased for the PRF (if
E(u|x) = 0 does not hold) but is by definition consistent for the PRF.

For consistency we need only SLR 1 - SLR 3, but keep in mind that if the PRF
does not have a causal interpretation (see below in Section 2.7), OLS-MM is
consistent only for the PRF not for the causal effect of x on y.
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2.6.3 Are β̂0 and β̂1 the “most efficient” estimators for β0 and β1 ?

A third desirable property of an estimator is efficiency which requires that
the estimator has a small variance, possibly the smallest in a given class of
estimators.

Remember that since the estimate is a function of random variables (the sample
observations), it is itself a random variable.

We have seen that under assumptions SLR 1 - SLR 4,

E(β̂1|x) = β1 and E(β̂0|x) = β0 (76)

We know want to find

V (β̂1|x) and V (β̂0|x) (77)

The simplest context in which these variances can be computed is the one of
homoscedasticity
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Homoscedasticity

SLR 5: The error u is said to be homoscedastic if it has the same variance
given any value of the explanatory variable x:

V (u|x) = σ2 (78)

It is important to realize that SLR 5:

• is not needed to prove unbiasedness

• it is just introduced at this stage to simplify the calculation of the variance
of the estimator, but we will later remove it because it is unlikely to hold in
most applications.

What we can say at this stage is that under SLR1 - SLR5:

E(y|x) = β0 + β1x and V (y|x) = σ2 (79)

which is the situation described in Figure 2.8 of Wooldridge.
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The variance of β̂1 under homoscedasticity

Using 56 we can express the variance of β̂1 (see problem 2.10 for the β̂0) as

V (β̂1|x) = V

(
β1 +

∑n
i=1(ui)(xi − x̄)∑n

i=1(xi − x̄)2
|x
)

(β1 is a constant) (80)

=

(
1∑n

i=1(xi − x̄)2

)2

V




n∑

i=1

(ui)(xi − x̄)|x


 (conditioning on x)

=

(
1∑n

i=1(xi − x̄)2

)2 n∑

i=1

(xi − x̄)2V (ui)|x) (indep., random i)

=

(
1∑n

i=1(xi − x̄)2

)
σ2 (homoschedasticity)

=
σ2

SSTx

The variance of β̂1 is smaller, the smaller is the variance of the unobserved
component and the larger is the sample variance of the explanatory variable x.
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How can we estimate σ2

Given a sample we have SSTx but we still need an estimate of σ2. Consider:

yi = β0 + β1xi + ui (81)

yi = β̂0 + β̂1xi + ûi (82)

Note that
ûi − ui = −(β̂0 − β0) − (β̂1 − β1)xi (83)

which implies that the estimated residual ûi is in general different than the
unobservable component ui. Taking the sample average of 83 we get:

ū = (β̂0 − β0) + (β̂1 − β1)x̄ (84)

where ū is the sample average of the ui (note that the sample average of ûi is
zero). Adding 84 to 83 we get:

ûi = (ui − ū) − (β̂1 − β1)(xi − x̄) (85)

Since σ2 = E(u2
i ) it would seem natural to construct an estimator σ̂2 building

around
∑n

i=1(û
2
i).
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An unbiased estimator for σ2

Using 85:

E(

n∑

i=1

û2
i ) = E[

n∑

i=1

(ui − ū)2] + E[(β̂1 − β1)
2

n∑

i=1

(xi − x̄)2] (86)

− 2E[(β̂1 − β1)

n∑

i=1

ui(xi − x̄)]

= (n− 1)σ2 + σ2 − 2σ2 = (n− 2)σ2

Hence and unbiased estimator of σ2 is:

σ̂ =
1

n− 2

n∑

i=1

û2
i (87)

The intuition for the n − 2 is that there are only n − 2 degrees of freedom in
the OLS residuals since

n∑

i=1

ûi = 0 and
n∑

i=1

xiûi = 0 (88)
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2.6.4 Asymptotic efficiency

If the sample size is large enough, in parallel to consistency we may be inter-
ested in the asymptotic distribution (specifically the variance) of the OLS-MM
estimator.

It is possible to prove that under the assumptions SLR 1 - SLR 5

√
n(β̂1 − β1) ∼ Normal

(
0,

σ2

V (x)

)
(89)

Moreover, it is also possible to show that the asymptotic variance is the smallest
in the class of linear estimators.
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2.6.5 The Gauss-Markov Theorem

Under the assumptions:

SLR 1: In the population y is a linear function of x.

SLR 2: The n observations yi and xi are a random sample of the population.

SLR 3: The observations {x1, ..., xn} are not all equal.

SLR 4: The residual u is mean-independent of x.

SLR 5: The error u is homoschedastic.

The OLS-MM estimator is the Best Linear Unbiased Estimators (BLUE) and
has the smallest asymptotic variance in the class of linear estimators for the
parameters in

y = β0 + β1x + u (90)

Note that SLR 5 is needed only for efficiency.

The proof is easier in the context of the matrix derivation of the OLS-MM
estimator which we will discuss below.
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2.7 Causality and Regression: a brief introduction for future reference

So far we have characterized the Population Regression Function as a linear
approximation to the Conditional Expectation Function.

OLS-MM is an estimator of the PRF with some desirable properties.

Given a specific sample, the Sample Regression Function estimated with OLS-
MM is a “good” estimate of the PRF-CEF.

It is not an estimate of the causal effect of x on y unless the CEF-PRF itself
can be interpreted in a causal sense.

We want to briefly introduce what it means to give a causal interpretation to
the PRF-CEF and what this implies for the regression.

A more detailed and exhaustive analysis of the problem of Causal Inference is
left for the third course of the LMEC microeconometrics sequence.
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What is needed for a “causal” interpretation of the PRF

For each subject in the population there exist two “potential wage levels” de-
pending on whether one goes to college (high education) or not (low education):

yh = µh + ν (91)

yl = µl + ν

whereE(ν) = 0. Only one of these outcomes realizes and is effectively observed.

The “causal effect” of college attendance on earnings for a subject is defined as
the difference between the two potential outcomes (Holland 1986):

τ = yh − yl = µh − µl (92)

This population parameter is not identified for a given subject because nobody
is observed in both the two potential “treatment” situations.

Let x = 1 denote college attendance while x = 0 indicates lower education.
The observed wage level y is given by:

y = yl(1 − x) + yhx (93)
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From potential to observed outcomes

We want to know if and under what conditions the parameter β1 of the PRF

y = β0 + β1x + u (94)

identifies the average causal effect of college attendance on earnings in the
population.

Substituting 91 in 93 the causal relationship between x and y is:

y = µl + (µh − µl)x + ν (95)

which looks promising, but we need to show that, given how we defined β1 in
the PRF (see equation 8), it follows that:

β1 = µh − µl (96)

In other words we need to show that in this context, if

(β0, β1) = arg min
b0,b1

E
[
(y − b0 − b1x)2

]
(97)

then 96 holds.
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A useful general result: regression when x is a dummy

We have seen that the solution to problem 97 is

β1 =
Cov(y, x)

V (x)
=
E(yx) − E(y)E(x)

E(x2) − (E(x))2
(98)

Note that β1 is a population parameter (not an estimator).

Since x is a dummy, V (x) = p(1 − p) where p = Pr(x = 1), while the
numerator of 98 is:

E(yx) − E(y)E(x) = E(y|x = 1)p− pE(y) (99)

= E(y|x = 1)p− p[E(y|x = 1)p + E(y|x = 0)(1 − p)]

= E(y|x = 1)p(1 − p) − E(y|x = 0)p(1 − p)

and therefore

β1 =
Cov(y, x)

V (x)
= E(y|x = 1) − E(y|x = 0) (100)

The corresponding OLS-MM estimator obtained by substituting sample averages
on the right hand side of 100 is called “Wald estimator”.
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Is β1 a causal parameter?

Substituting 95 in 100, we get

β1 = E(y|x = 1) − E(y|x = 0) (101)

= E(µh + ν|x = 1) − E(µl + ν|x = 0)

= µh − µl + [E(ν|x = 1) − E(ν|x = 0)]

= τ + [E(ν|x = 1) − E(ν|x = 0)]

where the term in brackets is called Selection Bias (SB) and captures all the
(pre-treatment) unobservable differences between college graduates and other
subjects, which are not attributable to college attendance.

The PRF and β1 have a causal interpretation if the SB is zero, i.e. “treated”
and “non-treated” subjects would be identical in the absence of treatment. This
may happen:

• in a randomized controlled experiment;

• when for other reasons not controlled by the researcher, exposure to treat-
ment is random in the population.
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The more general result when x is not dummy

In the more general situation in which x is not a dummy

β1 =
Cov(y, x)

V (x)
=
Cov[(µl + τx + ν), x]

V (x)
(102)

= τ +
Cov(ν, x)

V (x)

and the PRF is causal when, in the population, the treatment x is uncorrelated
with unobservable pre-treatment characteristics ν of subjects.

The interpretation is the same as in the “binary x” case.

Causality is a feature of the relationship between x and y, and can be identified
only when subjects are randomly exposed to x.

When random exposure of subjects to x occurs in the population of interest,
we can interpret the PRF as a causal relationship.
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Another way to put it

Compare:

y = β0 + β1x + u (103)

y = µl + τx + ν (104)

We know that by definition β0 and β1 in 103 imply

Cov(x, u) = E(xu) = 0 (105)

but nothing guarantees that the u which derive from the definition of the PRF
parameters and satisfies 105, coincide with ν.

Only when x and ν are that

Cov(x, ν) = E(xν) = 0 (106)

i.e. we have random exposure of subjects to x in the population, then

ν = u and β1 = τ (107)

and the PRF can be interpreted causally.
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Consistency and causality

Following the A-P approach, the OLS-MM estimator is consistent for the PRF
by definition of the population parameters it aims to estimate because

Cov(x, u) = E(xu) = 0 (108)

follows from the definition of β1 and β0 and is not an assumption.

But “consistency” simply means that the SRF can be made arbitrarily close to
the PRF by increasing the sample size.

Thus, consistency of OLS-MM implies nothing about causality. Only if

Cov(x, ν) = E(xν) = 0 (109)

the PRF is a causal relationship, in which case the OLS-MM is consistent for
the causal effect of x on y in the population.

If we are not interested in unbiasedness (and why should we) we can forget of:

E(u|x) = 0 (110)
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2.8 Summary

• The causal effect of x and y requires comparing counterfactuals and cannot
be identified for a specific subject.

• If we have a population in which exposure to x is random, then the PRF
identifies the average causal effect of x on y in the population.

• But even if exposure to x is not random, we can still define and be interested
in the PRF, which is the MMSE approximation to the unknown CEF.

• The PRF defines its parameters in a way such that the population residuals
are uncorrelated with x, but this does not ensure a causal interpretation.

• However this definition of the PRF guarantees that we can say something
about the PRF (and the CEF) with a random sample of the population.

• Given a specific sample, the OLS-MM estimator provides the Best linear
Unbiased Estimates of the PRF parameters (independently of causality) if
the SLR 1 - SLR 5 assumptions of Gauss Markov hold.

• SLR 1 - SLR 3 are enough for OLS-MM to be consistent for the PRF.
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An example of an interesting, but not causal, PRF

Suppose that the olive oil y produced by a tree in my field depends on the daily
rainfall x during spring, which changes from tree to tree because of wind.

Rainfall is arguably random and I am interested in the causal relationship

y = µ + τx + ν (111)

where ν captures other determinants of a trees’ product y.

Under 30% of the trees (my random sample) I have a device that gives a daily
rainfall measure x̃ of the rain falling on the tree, with a random error η:

x̃ = x + η (112)

The relationship between x̃ and y is

y = µ + τ x̃− τη + ν = µ+ τ x̃ + e (113)

and is not causal because

Cov(x̃, e) = Cov(x̃,−τη + ν) = −τV (η) (114)
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Can the PRF of y on x be interpreted causally?

Consider the population regression:

y = β0 + β1x̃ + u (115)

where β0 andβ1 are defined to ensure that Cov(x̃, u) = 0, which implies:

β1 =
Cov(y, x̃)

V (x̃)
(116)

=
Cov(µ + τ x̃ + e, x̃)

V (x̃)
= τ +

Cov(e, x̃)

V (x̃)

= τ − τ
V (η)

V (x) + V (η)

The PRF is not causal, because regression is not capable to distinguish between
variation in x which have an effect and variation in η which have no effect.

Therefore the PRF provides a downward biased measure of the causal effect of
x on y and the size of the bias depends on the “noise-to-signal” ratio:

V (η)

V (x) + V (η)
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Is it still interesting to estimate the PRF?

I cannot use β1 from the PRF to say what would happen if I artificially increase
the quantity of rainfall on my tree.

Indeed, if I used it I would underestimate the causal effect.

But I can still use the PRF as the best predictor of a tree’s product given my
(imperfect) rainfall measurement.

If I need to decide in advance how many olive oil bottles I should buy, the PRF
gives me the best prediction given the available information.

With a random sample of rainfall measures and related olive oil output, I can
estimate the SRF which would be consistent for the PRF.

The consistency of β̂1 for β1 would still be desirable for prediction purposes,
even if β̂1 would not be consistent for τ .
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3 Multiple Regression Analysis

Even if a non causal PRF may be interesting, our main goal is and should be to
estimate a PRF that is also causal.

We now consider cases in which it is reasonable to make the Conditional
Independence Assumption.

This assumption says that controlling for a set of observable variables, the PRF
has a causal interpretation for the main effect of interest.

In the following section we want to understand:

• the meaning of this assumption;

• how it relates to multiple regression.

An example: the effect of children’s sex on parental time with children, control-
ling for the number of children.

In the last course of the microeconometric sequence we will consider other
assumptions that allow to estimate consistently causal parameters.
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3.1 The Conditional Independence Assumption (CIA) and Regression

Consider a causal model like 95 that we derived in Section 2.7:

y = µ + τ1x1 + ν (117)

where y is earnings and x1 is years of education.

Suppose that ν = τ2x2 + ω where x2 is genetic ability.

Then β1 of the PRF of y on x1 is

β1 =
Cov(y, x1)

V (x1)
(118)

=
Cov(µ+ τ1x1 + ν, x1)

V (x1)
= τ1 +

Cov(ν, x1)

V (x1)

= τ1 + τ2
Cov(x1, x2)

V (x1)
+
Cov(x1, ω)

V (x1)

which, given τ2 6= 0, is equal to the causal parameter τ1 of equation 117 only if

Cov(x1, x2) = Cov(x1, ω) = 0.
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A solution if x2 is observable

The Conditional Independence Assumption says that for a given value of x2 = k

Cov(x1, x2|x2 = k) = 0 (119)

which is obvious because now x2 is a fixed number, and

Cov(x1, ω|x2 = k) = 0 (120)

which is less obvious: it is actually the crucial part of the assumption.

If we take a sub-group of the population with a given level of ability x2 = k
and we estimate the PRF for this population sub-group, the PRF is causal.

When education x1 is a binary variable, the assumption is easier to interpret:

Cov(x1, ω|x2 = k) = 0 = [E(ω|x1 = 1, x2 = k) − E(ω|x1 = 0, x2 = k)]

which says that among individual with ability x2 = k there is no “selection
bias” in the choice between education levels. In other words education is chosen
randomly for given ability.
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The population multiple regression function

Consider the population regression of y on both x1 and x2:

y = β0 + β1x1 + β2x2 + u (121)

where
(β0, β1, β2) = arg min

b0,b1,b2

E
[
(y − b0 − b1x1 − b2x2)

2
]

(122)

i.e. where the population parameters are defined to minimize the square of the
difference between y and the PMRF itself.

We want to show that if the CIA holds β1 is the causal effect of x1 on y

And the same is true symmetrically if we are interested in the effect of x2.

Therefore, if given a random sample we can estimate consistently the PMRF,
we can obtain consistent estimates of the causal parameters of interest.
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The coefficients of the PMRF

The First Order Conditions for problem 122 are:

E [x1(y − β0 − β1x1 − β2x2)] = 0 (123)

E [x2(y − β0 − β1x1 − β2x2)] = 0 (124)

E [(y − β0 − β1x1 − β2x2)] = 0 (125)

The first two conditions are symmetric: let’s focus on 123.

Consider the simple linear PRF of x1 on x2. We can always write:

x1 = x̂1 + r̂1 (126)

which we can substitute in 123 to get

E [(x̂1 + r̂1)(y − β0 − β1x1 − β2x2)] = E [(x̂1 + r̂1)u] = 0 (127)

By the definition of the PRF, E(x̂1u) = 0, since x̂1 is a linear function of x2.
Moreover E(r̂1x2) = 0 given 126 and E(r̂1β0) = 0. Thus 127 becomes:

E [r̂1(y − β1x1)] = 0 (128)
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The coefficients of the PMRF (cont.)

Substituting 126 in 128 we get:

E [r̂1(y − β1(x̂1 + r̂1))] = 0 (129)

Again because E(r̂1x̂1) = E(r̂1x2) = 0 we are left with

E [r̂1(y − β1r̂1)] = 0 (130)

which finally gives

β1 =
E(r̂1y)

E(r̂2
1)

=
Cov(r̂1, y)

V (r̂1)
(131)

The PRF coefficient β1 is equal to the covariance between y and the residuals
of the PRF of x1 on x2, divided by the variance of these residuals.

We now want to show that if the CIA is satistified

β1 = τ1 (132)

and the PRF of y on x1 and x2 has a causal interpretation for the effect of x1.

Similar results holds for β2.
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The coefficients of the PMRF under the CIA

Substitute the causal model 117 in the numerator of 131:

E(r̂1y) = E(r̂1(µ+ τ1x1 + τ2x2 + ω)) (133)

= τ1E(r̂2
1) + τ2E(r̂1x2) + E(r̂1ω)

Note that:
E(r̂1x2) = 0 (134)

and
E(r̂1ω) = E(E(r̂1ω|x2)) = E(Cov(x1, ω|x2)) = 0 (135)

where the second equation is satisfied if the CIA 120 holds.

Therefore:

β1 =
E(r̂1y)

E(r̂2
1)

=
τ1E(r̂2

1)

E(r̂2
1)

= τ1 (136)

If the CIA holds the PMRF can be interpreted causally for x1.

The same may (but does not have to) be true symmetrically for x2.
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Summary

We have shown that if we are interested in the causal effect of x1 on y the CIA
may represent a solution.

The CIA says that the other variables {x2, ..., xk} that we observe are detailed
and exaustive enough to guarantee that if two subjects are equal in terms of
these variables the value of x1 is effectively assigned randomly to them.

The randomness of the assignment of x1 given {x2...xk} is what permits a
causal interpretation of β1.

In what follows in this course we assume that the CIA holds symmetrically for
all variables, and therefore all the parameters of the PMRF can be interpreted
causally.

In the final course of the LMEC econometric sequence we will discuss alternative
solutions when the CIA cannot be assumed to hold.

64



3.2 Interpretation of the partial Multiple Regression coefficient

Extending the analysis to many covariates x, consider:

y = β0 + β1x1 + ... + βkxk + u (137)

(β0, ..., βk) = arg min
b0,...,bk

E
[
(y − b1x1 − ...− bkxk)2

]
(138)

the generic parameter βj (for j > 0) is

βj =
E(r̂jy)

E(r̂2
j)

=
Cov(r̂j, y)

V (r̂j)
(139)

This parameter measures the effect on y of the component of xj that is orthog-
onal to the other x variables. In fact this parameter can be obtained by:

• regressing xj on all the others x variables;

• taking the residuals of this regression r̂j;

• considering the simple PRF of y on the single variable r̂j;

• r̂j captures the part of xj that is orthogonal to the other x variables.
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3.3 From the SMRF to the PMRF in matrix form

As for the case of the simple linear regression, we now suppose to have a random
sample of observations on y and x1, ...xk and we ask:

• whether we can extend the OLS-MM estimator;

• whether the OLS-MM estimator continues to have good properties.

Since we have multiple covariates it is convenient to use matrix notation.

Y = Xβ + U (140)

where

• Y is the n× 1 column vector of observations on the outcome yi.

•X is the n× (k + 1) matrix of observations xij on the jth covariate.

• U is the n× 1 column vector of observations ui.

• β is the (k + 1) × 1 column vector of the parameters to be estimated.

Note that X includes a column with all elements equal to 1 and the correspond-
ing parameter is the constant β0.
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The basic set of necessary assumption

MLR 1: The population regression function is linear in the parameters:

Y = Xβ + U (141)

MLR 2: The n observations on Y andX are a random sample of the population,
so that

yi = Xiβ + ui (142)

where Xi is the ith row of X.

MLR 3: There is no perfect collinearity, i.e no variable in X is constant (in
addition to the constant term ...) and there is no exact linear dependency
between any set of variables in X. Thus X has full rank equal to (k+1).

MLR-3 is crucial and sometimes may generate unexpected problems.

It is a generalized version of SLR-3 in the simple regression case.

Example: consider the case of a regression of earnings on dummies for gender.
Why X cannot contain a constant and both gender dummies?
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The OLS-MM estimator in matrix form

Under these assumptions, the OLS-MM estimator solves the following problem

β̂ = argmin
b
U ′U = argmin

b
[Y −Xb]′[Y −Xb] (143)

where b is a (k + 1) × 1 column vector of possible parameter values.

There are k + 1 FOC for this problem which we can write as

∂U ′U
∂b

= X ′[Y −Xβ̂] = 0 (144)

or
X ′Xβ̂ = X ′Y (145)

which give the OLS-MM estimator in matrix form

β̂ = (X ′X)−1X ′Y (146)

where the full rank of X makes X ′X invertible.
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Algebraic properties of OLS in matrix form

The fitted values are
Ŷ = Xβ̂ (147)

and the estimated residuals are

Û = Y − Ŷ = Y −Xβ̂ (148)

Therefore the first order condition 144 can also be written as

X ′Û = 0 (149)

and since the first row of X ′ is a row of ones (the constant), the sum of the
OLS residuals is zero.
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3.4 Unbiasedness of the OLS-MM estimator of the PMRF

The proof of unbiasedness is similar to the simple regression case;

β̂ = (X ′X)−1X ′Y (150)

= (X ′X)−1X ′(Xβ + U)

= (X ′X)−1X ′Xβ + (X ′X)−1X ′U
= β + (X ′X)−1X ′U

Taking the expectation

E(β̂|X) = β + (X ′X)−1X ′E(U |X) (151)

= β

which follows from the assumption:

MLR 4: Conditioning on the entire matrix X each ui has zero mean

E(U |X) = 0 (152)

Think about the meaning of this assumption in a times series context with lag
and lead variables.
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3.4.1 Omitted variable bias and inclusion of irrelevant regressors

Suppose that we have omitted a variable Z which we think should be included
for the CIA to hold. Thus:

U = Zγ + V (153)

The expected value of the estimator for β is:

E(β̂|X) = β + (X ′X)−1X ′E[U |X ] (154)

= β + (X ′X)−1E[X ′Z|X ]γ + (X ′X)−1X ′E[V |X ]

= β + (X ′X)−1X ′E[Z|X ]γ

The omission of Z generates a bias if

• the mean of Z is not independent of X;

• Z has a non-zero effect γ on the outcome.

The sign of the bias is easy to determine if X and Z include only one variable
each. Not obvious otherwise.
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3.5 Variance of the OLS-MM estimator of the PMRF

We now derive the variance of the OLS-MM estimator under the simple case of
homoschedasticity

MLR 5: The variance-covariance matrix of the unobservable component is

V ar(U |X) = E(UU ′|X) = σ2In (155)

where In is the n× n identity matrix.

Note that this assumption (which we have already seen in the simple regression
case) has two important components:

• The variance of ui should not depend on any variable xj.

• The covariance between ut and us should be zero for any t and s. This
component:

– typically does not hold in time series because of serial correlation;

– it is traditionally assumed to hold because of random sampling in a cross-
sectional context; but recently authors understand that in most applica-
tions it cannot be assumed to hold even in a cross section (see below).
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Variance-covariance matrix

Given 146 and 151:

V ar(β̂|X) = E[(β̂ − β)(β̂ − β)′|X ] (156)

= E[(X ′X)−1X ′UU ′X(X ′X)−1|X ]

= (X ′X)−1X ′E[UU ′|X ]X(X ′X)−1

= (X ′X)−1X ′σ2InX(X ′X)−1

= σ2(X ′X)−1

which is a (k + 1) × (k + 1) matrix.

The OLS-MM estimator is more precise:

• the smaller is the variance of the unobservable components.

• the larger is the total variation in the observable regressors X.

• the smaller is the collinearity among the observable regressors in X.

What does this mean for strategies that we can adopt to increase precision of
OLS-MM?
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An alternative useful way to write the variance of the OLS-MM estimator

Following Wooldridge (Appendix to Chapter 3), the variance of the jth param-
eter can be written as

V ar(β̂j) =
σ2

SSTj(1 −R2
j)

(157)

where

• SSTj =
∑n

i=1(xij − x̄j)
2 is the total sample variation of the regressor xj.

• R2
j is the R-squared of the regression of xj on the other regressors.

This expression emphasizes the three components of the variance of the OLS-
MM estimator:

• variance of the unobservable components;

• variance of the regressors;

• multicollinearity between the regressors.

Is it always a good idea to include more regressors?
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An unbiased estimator of σ2

We want to show that

σ̂2 =
1

n− k − 1
Û ′Û (158)

is unbiased for σ2. Note that for k = 1 this is the same estimator that we have
studied for the simple linear regression case.

Û = Y −Xβ̂ (159)

= Y −X(X ′X)−1X ′Y
= MY = M(Xβ + U)

= MU

Where M = I −X(X ′X)−1X ′ is a symmetric and idempotent matrix:

•M ′ = M

•M ′M = M

•MX = 0

•MY = MU
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An unbiased estimator of σ2 (cont.)

E[Û ′Û |X ] = E[U ′M ′MU |X ] (160)

= E[tr(U ′MU)|X ] because a scalar is equal to its trace

= E[tr(MUU ′)|X ] because of the property of the trace

= tr(ME[UU ′|X ])

= tr(M)σ2

= (n− k − 1)σ2

which proves the result. The last equality follows because

tr(M) = tr(In) − tr(X(X ′X)−1X ′) (161)

= tr(In) − tr((X ′X)−1X ′X)

= tr(In) − tr(Ik+1)

= n− k − 1

In a sample of size n that we use to estimate k + 1 parameters β, we are left
with only n− k − 1 “degrees of freedom” to estimate σ2.
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3.6 The Gauss-Markov theorem

Under the assumptions

MLR 1: The population regression function is linear in the parameters:

Y = Xβ + U (162)

MLR 2: The n observations on Y andX are a random sample of the population

yi = Xiβ + ui (163)

MLR 3: There is no collinearity and X has full rank equal to (k+1).

MLR 4: Conditioning on the entire matrix X each ui has zero mean

E(U |X) = 0 (164)

MLR 5: The variance-covariance matrix of the unobservable component is

V ar(U |X) = E(UU ′|X) = σ2In (165)

The OLS-MM estimator β̂ is the best linear unbiased estimator.
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Proof of the Gauss Markov theorem

Consider a generic alternative linear unbiased estimator

β̃ = A′Y (166)

where A is a n× (k + 1) matrix. Linearity in Y implies that A is a function of
X but cannot be a function of Y . Since β̃ is unbiased it must be the case that:

E(β̃|X) = A′Xβ + A′E(U |X) (167)

= A′Xβ because E(U |X) = 0

= β

and therefore A′X = Ik+1 and β̃ characterizes the class of linear (in Y ) unbi-
ased estimators.

The variance of β̃ is:

V ar(β̃|X) = E[(β̃ − β)(β̃ − β)′|X ] (168)

= E[A′UU ′A|X ]

= σ2(A′A)
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Proof of the Gauss Markov theorem (cont)

V ar(β̃|X) − V ar(β̂|X) = σ2[A′A− (X ′X)−1] (169)

= σ2[A′A− A′X(X ′X)−1X ′A] because A′X = Ik+1

= σ2A′[In −X(X ′X)−1X ′]A
= σ2A′MA

Since M is symmetric and idempotent, A′MA is positive semidefinite for any
conformable A, which proves the result.

The OLS-MM estimator β̂ has the smallest variance in the class of linear unbi-
ased estimators.
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3.7 Partialling out: again on the interpretation of the PMRF

The matrix
H = Z(Z′Z)−1Z′ (170)

is called a“projection matrix” because if you premultiply any vector Y by H,
the result is the projection of the vector Y on the space spanned by Z.

Numerically it gives the least square prediction of Y given Z (see graphical
interpretation of OLS).

YZ = HY = Z(Z′Z)−1Z′Y = Zψ̂ (171)

for the PRF
Y = Zψ + V (172)

Note that H is symmetric and idempotent.
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Projections

Consider the population regression:

Y = Xβ + U = Wδ + Zγ + U (173)

where W is the main variable of interest and Z contains a set of other control
variables.

Consider the two projections

YZ = HY = Z(Z′Z)−1Z′Y = Zγ̃ (174)

WZ = HW = Z(Z′Z)−1Z′W = Zρ̃ (175)

Consider the residuals from these two projections that we denote as

Ỹ = Y − YZ (176)

W̃ = W −WZ (177)

What happens if we regress Ỹ on W̃ ?
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Partialling out matrices

Consider now the symmetric idempotent matrix M :

M = I −H = I − Z(Z′Z)−1Z′ (178)

If you premultiply any vector by M you obtain the least square estimated resid-
uals of the regression of the vector on Z (see graphical analysis).

Specifically:

Ỹ = Y − YZ (179)

= MY = Y − Z(Z′Z)−1Z′Y (180)

W̃ = W −WZ (181)

= MW = W − Z(Z′Z)−1Z′W (182)

Ũ = U − UZ (183)

= MU = U − Z(Z′Z)−1Z′U (184)

Z̃ = Z − ZZ (185)

= MZ = Z − Z(Z′Z)−1Z′Z = 0 (186)
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Partialling out matrices (cont.)

Let’s now premultiply the PMRF 173 by M:

MY = MWδ +MZγ +MU (187)

Ỹ = W̃ δ + Ũ

which explains why M is called a “partialling out” matrix. Note that this PRF
satisfies Gauss-Markov.

Consider the OLS-MM estimator of 187

δ̂ = (W̃ ′W̃ )−1W̃ ′Ỹ (188)

= (W ′M ′MW )−1W ′M ′MY

= (W ′MW )−1W ′MY

It is obtained by regressing Y on the component of W which is orthogonal to
Z and is numerically identical to the OLS-MM estimator of δ that we would
obtain by estimating directly 173.

Also the standard error is numerically identical: V ar(δ̂) = σ2(W ′MW )−1.
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3.8 Good and bad habits concerning control variables

It is important to realize that it may not always be a good idea to add controls
in a regression, specificaly controls that are themselves causally affected by the
main variable of interest.

We know that it is a good idea to control for omitted variables, when they are
needed to ensure the CIA. If the causal PRF is

Y = Xβ + Zγ + U (189)

and we run
Y = Xβ + V (190)

we get a biased and inconsistent estimate

E(β̂) = β + (X ′X)−1E[X ′Z]γ (191)

If we have observations on Z we should include them in the regression.

It is a good idea to include Z even if E[X ′Z] = 0, in which case the goal is
not to avoid a bias but to increase efficiency.
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Controlling to increase precision

Consider a random experiment in which a training program X is randomly
assigned to estimate its effect on future earnings Y . The causal PRF is

Y = Xβ + U (192)

Consider a set of predetermined demografic characteristics D, which by random
assignment of X are not correlated with X, but have a causal effect on Y .

If we run the PMRF
Y = Xβ +Dγ + V (193)

the OLS estimator for β is:

β̂ = (X ′MX)−1X ′MY (194)

whereM = I−D(D′D)−1D′. Note thatMX = X becauseD(D′D)−1D′X =
0: D and X are not correlated. But

σ2
U = V ar(U) = γ2V ar(D) + V ar(V ) > V ar(V ) = σ2

V

and therefore β is estimated more precisely using 193.
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A first case of misleading control variable

Now suppose that D is instead the occupation chosen by the subject after
training: white and blue collars.

The training program increases the chance of a white collar occupation.

Note that X is randomly assigned in the population, but not within the occu-
pational group!

If we estimate
Y = Xβ + U (195)

we get an unbiased and consistent estimate of β which is the overall causal effect
of training, including the effect that runs through the occupational choice.

In this case, it would be a bad idea to run

Y = Xβ +Dγ + V (196)

unless the efficiency gain were huge.
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A first case of misleading control variable (cont.)

If we did run 196, we would get

β̂ = (X ′MX)−1X ′MY 6= (X ′X)−1X ′Y (197)

To understand the bias note that 196 is equivalent to comparing trained and
not trained for given occupation, i.e. in the case of D0 = D1 = 1 (here and
below subscripts denote the potential earnings and assignments to training):

E(Y |X = 1, D = 1) − E(Y |X = 0, D = 1) (198)

= E(Y1|X = 1, D1 = 1) − E(Y0|X = 0, D0 = 1)

= E(Y1|D1 = 1) − E(Y0|D0 = 1)

= E(Y1 − Y0|D1 = 1) + [E(Y0|D1 = 1) − E(Y0|D0 = 1)]

where the second equality derives from the joint independence of Y1, D1, Y0, D0
from X.

The bias is represented by the selection effect [E(Y0|D1 = 1)−E(Y0|D0 = 1)]
which reflects the fact that composition of the pool of white collar workers has
changed because of training even in the counterfactual case of no training.
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A second case of misleading control variable

Let’s now go back to the case in which the true causal PRF is

Y = α +Xβ + Zγ + U (199)

where Z is predetermined ability, X is education and Y is earnings, but we can
observe only a measure Z̃ of Z taken after education has occurred (e.g. IQ):

Z̃ = π0 +Xπ1 + Zπ2 + e (200)

Substituting 200 in 199 we get

Y =

(
α− γ

π0

π2

)
+

(
β − γ

π1

π2

)
X +

γ

π2
Z̃ + U (201)

And the OLS-MM estimator would be biased and inconsistent for the causal
parameters of interest.

Depending on assumptions, in this case we could still say something on β.

But the point is that timing is crucial in the choice of appropriate control
variables.

88



4 Inference and hypothesis testing

We are now interested in testing hypothesis concerning the parameters of the
PRF, using the estimator that we have constructed and analysed in the previous
sections

Here are some examples of hypotheses that we may want to test

• βj = 0;

• βj = q where q is any real number;

• βj ≤ q where q is any real number, including 0;

• βj = βh;

• β2
j − 2βjβi = 0

• r(β) = q where r(.) is any function of the parameters.

To test these hypotheses using the theory of Classical Hypothesis Testing, we
need to make assumptions on the distribution of the OLS-MM estimator β̂.
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4.1 Small sample distribution of the OLS-MM estimator β̂

If we are not in a condition to use large sample asymptotic properties of OLS-
MM, the only solution is to make small sample distributional assumptions on
the unobservable component U .

The Classical Linear Model Assumption is Normality:

MLR 6: In the population U is independent of X and is distributed normally
with zero mean and variance σ2In

U ∼ Normal(0, σ2In) (202)

Note that this implies
Y ∼ Normal(Xβ, σ2In) (203)

Discussion of the small sample assumption of Normality.
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From the distribution of U to the distribution of β̂

Since we know from 150 that

β̂ = β + (X ′X)−1X ′U (204)

using 202 it is easy to see that

β̂ ∼ Normal(β, σ2(X ′X)−1) (205)

And for a single PRF parameter we have that the standardized distribution

β̂j − β

sd(β̂j)
=

β̂j − β
σ√

SSTj(1−R2
j)

∼ Normal(0, 1) (206)

In practice, we do not know σ and we have to use its estimate σ̂ = Û ′Û
n−k−1 so

that:
β̂j − β

ŝd(β̂j)
=

β̂j − β
σ̂√

SSTj(1−R2
j)

∼ tn−k−1 (207)

where tn−k−1 denotes a “t distribution” with n− k − 1 degrees of freedom.
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4.2 Small sample testing of an hypothesis

The general logic of classical hypothesis testing can be summarized as follows:

• Define the “null hypothesis” H0 on the parameter that we want to test.

• Construct a “test statistic” (based on the estimator) and characterize its
distribution under H0.

• Compute the value of the test statistic in the specific sample at our disposal.

• Using the theoretical distribution of the test statistic establish the probability
of observing the value that we have actually obtained for the test statistic if
H0 is true.

• If this probability is “sufficiently small” reject H0.

• The “significance” of the test is the threshold level of probability that we
consider sufficiently low to conclude that it is unlikely that the test statistics
that we have observed could have originated under H0.

• The “p-value” of the test is the smallest significance level at which H0 would
actually be rejected given the sample. Note that the p-value is a probability
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H0 : βj = 0 against the one sided alternative H1 : βj > 0

The simplest testable hypothesis is that Xj has positive effect on Y

H0 : βj = 0 against H1 : βj > 0 (208)

The test statistic for this hypothesis and its distribution under H0 are

t
β̂j

=
β̂j

ŝd(β̂j)
∼ tn−k−1 (209)

We reject H0 if in our sample

t
β̂j

=
β̂j

ŝd(β̂j)
> c (210)

where the critical level c > 0 is such that (see Wooldridge Figure 4.2)

Pr(τ > c|H0) = s with τ ∼ tn−k−1 (211)

and s is the significance level (e.g. s = 0.01 or s = 0.05). The p-value is:

p = Pr(τ > t
β̂j

=
β̂j

ŝd(β̂j)
|H0) (212)
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H0 : βj = 0 against the one sided alternative H1 : βj < 0

Similarly we can test that Xj has a negative effect on Y

H0 : βj = 0 against H1 : βj < 0 (213)

The test statistic for this hypothesis and its distribution unde H0 are

t
β̂j

=
β̂j

ŝd(β̂j)
∼ tn−k−1 (214)

We reject H0 if in our sample

t
β̂j

=
β̂j

ŝd(β̂j)
< −c (215)

where the critical level −c < 0 is such that (see Wooldridge Figure 4.3)

Pr(τ < −c|H0) = s with τ ∼ tn−k−1 (216)

and s is the significance level (e.g. s = 0.01 or s = 0.05). The p-value is:

p = Pr(τ < t
β̂j

=
β̂j

ŝd(β̂j)
|H0) (217)
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H0 : βj = 0 against the two sided alternative H1 : βj 6= 0

More generally we can test that Xj has a non zero effect on Y

H0 : βj = 0 against H1 : βj 6= 0 (218)

The test statistic for this hypothesis and its distribution under H0 are again

t
β̂j

=
β̂j

ŝd(β̂j)
∼ tn−k−1 (219)

We reject H0 if in our sample

|t
β̂j
| =

∣∣∣∣∣
β̂j

ŝd(β̂j)

∣∣∣∣∣ > c (220)

where the critical level c is such that (see Wooldridge Figure 4.4)

Pr(|τ | > c|H0) = 0.5s with τ ∼ tn−k−1 (221)

and s is the significance level (e.g. s = 0.01 or s = 0.05). The p-value is:

p = 2Pr(τ > |t
β̂j
| =

∣∣∣∣∣
β̂j

ŝd(β̂j)

∣∣∣∣∣ |H0) (222)
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H0 : βj = k against the two sided alternative H1 : βj 6= k

In this case we test that the effect of Xj has a specific size:

H0 : βj = k against H1 : βj 6= k (223)

The test statistic for this hypothesis and its distribution under H0 are again

t
β̂j

=
β̂j − k

ŝd(β̂j)
∼ tn−k−1 (224)

We reject H0 if in our sample

|t
β̂j
| =

∣∣∣∣∣
β̂j − k

ŝd(β̂j)

∣∣∣∣∣ > c (225)

where the critical level c is such that (see Wooldridge Figure 4.5)

Pr(|τ | > c|H0) =
1

2
s with τ ∼ tn−k−1 (226)

and s is the significance level (e.g. s = 0.01 or s = 0.05). The p-value is:

p = 2Pr(τ > |t
β̂j
| =

∣∣∣∣∣
β̂j − k

ŝd(β̂j)

∣∣∣∣∣ |H0) (227)
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4.2.1 Confidence intervals

Consider the interval {−λΦ, λΦ} defined by the equation:

Pr

(
−λΦ <

β̂j − βj

ŝd(β̂j)
< λΦ

)
= Φ (228)

The limits {−λΦ, λΦ} can be computed using the fact that
β̂j−β

ŝd(β̂j)
∼ tn−k−1.

Rearranging 228:

Pr
(
β̂j − λΦŝd(β̂j) < β < β̂j + λΦŝd(β̂j)

)
= Φ (229)

which says that with proability Φ the true value of the parameter β belong to the
interval {β̂j±λΦŝd(β̂j)}. In large sample, when the t distribution approximates
normal distribution a realiable approximation of the 95% confidence interval is

Pr
(
β̂j − 1.96ŝd(β̂j) < β < β̂j + 1.96ŝd(β̂j)

)
= 0.95 (230)

which means that with 95% probability the parameter is within two standard
deviations from the estimate.
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4.2.2 Testing hypothesis about linear combinations of parameters

There are situations in which we are interested in testing a slightly more com-
plicated hypothesis:

H0 : βj = βk against H1 : βj 6= βk (231)

The test statistic for this hypothesis and its distribution under H0 are again

t
β̂j,β̂k

=
β̂j − β̂k

ŝd(β̂j − β̂k)
∼ tn−k−1 (232)

and we could follow the usual procedure to test the hypothesis

What is slighlty more problematic in this case is the computation of

ŝd(β̂j − β̂k) =

√
[ŝd(β̂j]2 + [ŝd(β̂k]2 − 2 ˆCov(β̂j, β̂k) (233)

Given that V ar(β̂|X) = σ̂2(X ′X)−1 we have all the ingredients to compute
the test statistics. But there is a simpler alternative.
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Rearranging the PRF to test linear combination of hypotheses

Consider the population regression:

y = β0 + β1x1 + β2x2 + u (234)

and suppose that we want to to test

H0 : β1 = β2 against H1 : β1 6= β2 (235)

If we add and subtract β2x1 in 234, we get:

y = β0 + (β1 − β2)x1 + β2(x2 + x1) + u (236)

y = β0 + θx1 + β2(x2 + x1) + u

and we can now test with the standard procedure:

H0 : θ = 0 against H1 : θ 6= 0 (237)

Note that the estimates of the coefficients on x2 in 234 and on (x2 + x1) in
236 must be numerically identical.
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4.2.3 Testing multiple linear restrictions: the F test

Consider the unrestricted regression in matrix form

Y = X1β1 +X2β2 + Uur (238)

where

•X1 is a n× k1 + 1 matrix;

• β1 is k1 + 1 vector of parameters;

•X2 is a n× k2 matrix;

• β2 is k2 vector of parameters;

and suppose that we want to test the following joint hypothesis on the β2
parameters:

H0 : β2 = 0 against H1 : β2 6= 0 (239)

In which sense and why testing the joint hypothesis is different than the testing
the k2 separate hypotheses on the β2 parameters?
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The F test statistics

Consider the restricted regression

Y = X1β1 + Ur (240)

and the unrestricted PRF 238. A natural starting point to construct a test
statistic for the joint hypothesis is to see by how much the Sum of Squared
Residuals (SSR) increases going from the restricted to the unrestricted PRF

The F statistic is built around this idea:

F =

(SSRr−SSRur)
k2

SSRur
n−k−1

∼ Fk2,n−k−1 (241)

where k2 is the number of restrictions (the dimension of X2) and k is the total
number of parameters.

The F statistic is distributed accordint to an F distribution because it can be
shown to be the ratio of two χ2 distributions.
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The F test statistics (cont.)

Note that the numerator of F is always positive and it is larger, the larger the
reduction of SSR delivered by the unrestricted PRF.

We reject H0, if our sample gives

|F | ≥ c (242)

where the critical level c is such that

Pr(f > c|H0) = s with f ∼ Fk2,n−k−1 (243)

and s is the significance level (e.g. s = 0.01 or s = 0.05). The p-value is:

p = Pr(f > F |H0) (244)

Note that the F statistics can be construced not only for exclusion restrictions
but also for more complicated linear restrictions, as long as we can specify the
restricted and unrestricted PRF.
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The “R-squared” form of the F test

In some cases it may be convenient to exploit the fact that

SSRr = (1 − R2
r) (245)

SSRur = (1 − R2
ur)

(246)

and therefore the F statistics can be expressed as a function of the R-squared
of the restricted and unrestricted distribution:

F =

(R2
ur−R2

r)
k2

1−R2
ur

n−k−1

∼ Fk2,n−k−1 (247)

This form of the test is completely equivalent but more convenient for compu-
tational purposes.
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The F statistics and the overall significance of a regression

Most packages report the F test for the joint hypothesis that all the regressors
have no effect:

H0 : β = 0 against H1 : β 6= 0 (248)

In this case the restricted PRF is

y = β0 + Ur (249)

and the F test is

F =

(R2)
k

1−R2

n−k−1

∼ Fk,n−k−1 (250)

because the R-squared of the restricted PRF is zero.

The information of the F test statistics in this case is evidently the same of
the R-squared statistic, but it is framed in a way that allows for a test on the
significance of all the regressors.
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4.2.4 Power of a test (intuition for future reference)

The significance of a test measures the probability of rejecting H0 when it is
true, i.e. the probability of “Type I” decision errors.

But to evaluate the usefulness of a test we need also to worry about “Type II”
errors: i.e. failing to reject H0 when some specific alternative is in fact true.

The “power of a test” is 1 minus the probability of Type II errors, i.e. the
probability of not rejecting the alternative when it is true

Computing the power of a test requires defining a specific alternative and the
distribution of the test statistic under H1

In chosing between different possible tests we want the one that has more power,
for any given level of significance.
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4.3 Large sample distribution of the OLS-MM estimator β̂

The advantage of a large sample is that we do not need to make any distribu-
tional assumption on the outcome Y .

In particular we do not have to assume MLR 6: normality of U |X.

This is particularly important from a methodological/philosophical point of view
because it allows us to use all the machinery of regression analysis also in cases
where normality is clearly a wrong assumption:

• Discrete dependent variables

• Limited dependent variables

• “Conditional on positive” models

• Duration analysis

• Count data analysis

Thanks to large samples, econometrics becomes considerably simpler!

106



4.3.1 Summary of the asymptotic theory results that we need

To derive the asymptotic distribution of the OLS-MM estimator we need the
following results

• The Law of Large Numbers

• The Central Limit Theorem

• Slutsky’s Theorem

• The Continuous Mapping Theorem

• The Delta Method

For further details and proofs see Angrist Pischke (2008) and Knight (2000).
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Law of Large Numbers

Theorem 1. The Law of Large Numbers:
Sample moments converge in probability to the corresponding population
moments.

In other words, the probability that the sample mean (or any other moment) is
close to the population mean can be made as high as you like by taking a large
enough sample.
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Central Limit Theorem

Theorem 2. The Central Limit Theorem:
Sample moments are asymptotically Normally distributed after subtract-
ing the corresponding population moment and multiplying by the square
root of the sample size. The covariance matrix is given by the variance
of the underlying random variable.

For example, in the case of the sample mean:
√
n

(∑n
i=1wi

n
− µ

)
d−→ Normal(0, B) (251)

where wi is an i.i.d. random sample and B = V ar(wi).

Note that without the multiplication by
√
n, the standardized moment would

converge to zero.

In other words, in large enough samples, appropriately standardized sample mo-
ments are approximately Normally distributed.
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Slutsky’s Theorem

Theorem 3. Slutsky’s Theorem

Part 1:
Let an be a statistic with a limiting distribution and let bn be a statistic
with probability limit b. Then an + bn and an + b have the same limiting
distribution.

Part 2:
Let an be a statistic with a limiting distribution and let bn be a statis-
tic with probability limit b. Then anbn and anb have the same limiting
distribution.
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The continuous mapping theorem and Delta Method

Theorem 4. The continuous mapping theorem
The probability limit of h(bn) is h(b) if Plimbn = b and h(.) is continuous.

Theorem 5. The Delta Method
The asymptotic distribution of h(bn) is Normal with covariance matrix
∇h(b)′Ω∇h(b), if Plim bn = b, h(.) is continuously differentiable at b
with gradient ∇h(b), and bn has asymptotic normal distribution with the
covariance matrix Ω.

In other words, consider a vector-valued random variable that is asymptotically
Normally distributed.

Most scalar functions of this random variable are also asymptotically Normally
distributed, with covariance matrix given by a quadratic form with the covariance
matrix of the random variable on the inside and the gradient of the function
evaluated at the probability limit of the random variable on the outside.
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The estimator under consideration: β̂

Given the PRF Y = Xβ + U :

β̂ = (X ′X)−1X ′Y (252)

= β + (X ′X)−1X ′U

= β +


1

n

n∑

i=1

X ′
iXi




−1
1

n

n∑

i=1

X ′
iui




where Xi is the 1 × k + 1 vector of the regressors observed for subject i.

The asymptotic distribution of β̂ is the same as the distribution of

√
n(β̂ − β) =


1

n

n∑

i=1

X ′
iXi




−1

1√
n




n∑

i=1

X ′
iui


 (253)

which can be determined applying the asymptotic results stated above to the
sample moments on the right hand side of 253.
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Consistency of β̂

Consistency derives from the application to (252) of

• the Continuous Mapping Theorem;

• the Law of Large Numbers.

Exploiting the fact that probability limits pass through continuous functions and
substituting population moment to sample moment, β̂ converges in probability
to:

β̂ p−→ β +
(
E(X ′

iXi)
)−1 (

E(X ′
iui)
)

(254)

= β

where the last equality holds because E(X ′
iui) = 0 by definition of the PRF.
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Asymptotic distribution of β̂

Applying Slutsky’s Theorem to 253,
√
N(β̂ − β) has the same distribution of

(
E(X ′

iXi)
)−1 √

n


1

n

n∑

i=1

X ′
iui


 (255)

Since
1

n

n∑

i=1

X ′
iui p−→ E(X ′

iui) = 0 (256)

then
√
N


1

n

n∑

i=1

X ′
iui


 d−→ Normal(0, E(X ′

iXiu
2
i )) (257)

because it is a root-n blown up and centered sample moment, for which we can
use the Central Limit Theorem.

Note that E(X ′
iXiu

2
i ) is a (k + 1) × (k + 1) matrix.
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Asymptotic distribution of β̂ (cont.)

It then follows that:

β̂ d−→ Normal(β, [E(X ′
iXi)

−1][E(X ′
iXi)u

2
i ][E(X ′

iXi)
−1]) (258)

where note that [E(X ′
iXi)

−1][E(X ′
iXi)u

2
i ][E(X ′

iXi)
−1] is again a (k + 1) ×

(k + 1) matrix.

It is important to realize that to derive this result we have not assumed ho-
moscedasticity.

We have only assumed to have identically and independently distributed random
sample observations, which is necessary for CLT and LLN to hold.

These asymptotic standard errors are called “Robust”, or “Huber - Eicker -
White” standard errors (White (1980)) and provide accurate hypothesis tests in
large sample with minimal assumptions.
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Asymptotic distribution of β̂ (cont.)

If we are willing to assume homoschedasticity then

E(u2
i |X) = σ2 (259)

and the “Robust” variance covariance matrix in 258 simplifies to

[E(X ′
iXi)

−1][E(X ′
iXi)u

2
i ][E(X ′

iXi)
−1] = (260)

[E(X ′
iXi)

−1][E(X ′
iXiE(u2

i |X)][E(X ′
iXi)

−1] =

σ2[E(X ′
iXi)

−1][E(X ′
iXi)][E(X ′

iXi)
−1] =

σ2[E(X ′
iXi)

−1]

and
β̂ d−→ Normal(β, σ2[E(X ′

iXi)
−1]) (261)

We defer Section 5.2 a discussion of when and why we should use Robust
Standard Errors, and we focus here on how to perform inference and hypothesis
testing in large samples.

116



4.4 Large sample testing of an hypothesis

The classical hypothesis testing procedure that we have described for small
samples extends to large samples with one important caveat.

Consider the test statistics:

t
β̂j

=
β̂j

ŝd(β̂j)
(262)

where ŝd(β̂j) is now the sample counterpart of the asymptotic variance-covariance
matrices in 258 or 261.

This test statistics is not distributed “exactly” like a Student’s tn−k−1 because
the numerator is not exactly normal but only approximately normal.

Practically this is not really a problem because in large samples the Student’s
tn−k−1 is almost not distinguishable from a Normal.

This is why we do not have to tell STATA whether we are in “large” or “small’
samples!
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4.5 A general format of a test: The Wald test

Given the PRF
Y = Xβ + U (263)

let’s now consider the most general formulation of an hypothesis concerning β:

H0 : r(β) = q against H1 : r(β) 6= q (264)

where r(.) is any function of the parameters and r(β) − q is a ρ× 1 vector, if
ρ is the number of restrictions.

So H0 and H1 are systems of ρ equations if there are ρ restrictions.

Example :

H0 : r(β) = Rβ = q against H1 : r(β) = Rβ 6= q (265)

where R is a ρ × k + 1 matrix which charaterize the ρ restrictions on the
parameters that we would like to test.
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Exercise on the specification of a set of restrictions

Suppose that you are estimating the log of a Cobb Douglas production function
in which output depends on labor and capital and you want to test:

• constant returns to scale;

• the return to one unit of labor is twice the return to one unit of capital;

• there exist neutral technological progress/regress.

What is R for these restrictions?
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The logic of the Wald test

The logic of the test is that if the restrictions are valid the quantity r(β̂) − q
should be close to 0 while otherwise it should be far away from 0.

The Wald form of the test statistic that captures this logic is

W = [r(β̂) − q]′[V ar(r(β̂) − q)]−1[r(β̂) − q] (266)

In other words we want to evaluate how far away from 0 is r(β̂) − q after
normalizing it by its average variability. Note that W is a scalar.

If r(β̂) − q is normally distributed, under H0

W ∼ χ2
ρ (267)

where the number of degrees of freedom ρ is the number of restrictions to be
tested.

The difficulty in computing the test statistics is how to determine the variance
at the denominator.
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The variance of the Wald statistics

Using the Delta Method in a setting in which h(β̂) = r(β̂) − q

V ar[r(β̂) − q] =

[
∂r(β̂)

∂β̂

]
[V ar(β̂)]

[
∂r(β̂)

∂β̂

]′
(268)

where note that

[
∂r(β̂)

∂β̂

]
is a ρ × k + 1 matrix and therefore V ar[r(β̂) − q] is

a ρ × ρ matrix.

Going back to the example in which r(β̂) − q = Rβ̂ − q

V ar[Rβ̂ − q] = R[V ar(β̂)]−1R′ (269)

and the Wald test is

W = [Rβ̂ − q]′[RV ar(β̂)R′]−1[Rβ̂) − q] (270)

and V ar(β̂) is in practice estimated by substituting the sample counterparts of
the asymptotic variance-covariance matrices in 258 or 261, depending on what
we want to assume about homoschedasticity.
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Exercise: Wald test and simple restrictions

Consider again the unrestricted regression in matrix form

Y = X1β1 +X2β2 + Uur (271)

where

•X1 is a n× 2 matrix including the constant;

• β1 is dimension 2 vector of parameters;

•X2 is a n× 1 matrix;

• β2 is dimension 1 vector of parameters;

and suppose that we want to test the following joint hypothesis on the β2
parameters:

H0 : β2 = 0 against H1 : β2 6= 0 (272)

What is R in this case?
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Exercise: Wald test and simple restriction (cont.)

It is easy to verify that in this case the Wald test is

W = [Rβ̂ − q]′[RV ar(β̂)R′]−1[Rβ̂) − q] (273)

=
β̂2

2

V ar(β̂2)

which is the square of a standard t-test, and is distributed as a χ2 distribution
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Other large sample testing procedures

The Wald test is a general form of a large sample test that requires the estima-
tion of the unrestricted model.

There are cases in which this may be difficult or even impossible.

In the context of Maximum Likelihood estimation, an alternative large sample
testing procedure is the Lagrange Multiplier test, which requires instead only
the estimation of the restricted model.

A third alternative is the Likelihood Ratio test, which requires instead the esti-
mation of both the restricted and the unrestricted models.

These other general sample testing procedure are left for future discussion in
the context of Maximum Likelihood Estimation.

124



4.6 A Lagrange Multiplier test in the context of linear regression

In the simple context of linear regression we can define a LM test for multiple
exclusion restrictions without having to relate it to Maximum Likelihood (but
the name comes from that context!)

Consider again the unrestricted regression in matrix form

Y = X1β1 +X2β2 + Uur (274)

where

•X1 is a n× k1 + 1 matrix including the constant;

• β1 is dimension k1 + 1 vector of parameters;

•X2 is a n× k2 matrix;

• β2 is dimension k2 vector of parameters;

and suppose that we want to test the following joint hypothesis on the β2
parameters:

H0 : β2 = 0 against H1 : β2 6= 0 (275)
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A Lagrange Multiplier test in the context of linear regression (cont.)

Suppose to estimate the restricted PRF

Y = X1βr1 + Ur (276)

where the subscript r indicates that the population parameters and unobserv-
ables of this restricted equation may differ from the corresponding one of the
unrestricted PRF.

It is intuitive to hypothesize that in the auxiliary regression

Ûr = X1γ1 +X2γ2 + V (277)

if the restrictions in the primary PRF are valid then

H0 : β2 = 0 ⇒ γ2 = 0 (278)
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A Lagrange Multiplier test in the context of linear regression (cont.)

Let the R-squared of the auxiliary regression 277 be R2
U and consider the statis-

tics
LM = nR2

U (279)

If the restrictions are satisfied, this statistics should be close to zero because;

•X1 is by construction orthogonal to UR and therefore γ1 = 0;

• and γ2 = 0 if the restrictions are satisfied.

Since, given k2 exclusion restrictions:

LM = nR2
U ∼ χ2

k2
(280)

we can use the Classical testing procedure to test H0.
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5 Non-standard standard errors

We have considered instances in which the assumption of homoscedasticity

E(U2|X) = σ2In (281)

appears not plausible, but we have deferred so far a proper analysis of the
consequences and the solutions to the violations of this assumption.

We are interested in two kinds of violations, that we study separately:

i. Heteroscedasticity:

E(u2
i |X) = σ2

i 6= σ2
j = E(u2

j|X) = (282)

but E(uiuj) = 0 for i 6= j.

ii. Serial correlation and clustering

E(uiuj) 6= 0 (283)

for some or all i 6= j but σ2
i = σ2

j for i 6= j.

128



5.1 Heteroscedasticity

We should first realize that heteroscedasticity is likely to be the “rule” rather
than the “exception”.

Suppose that the CEF is non-linear and we approximate the CEF with a linear
PRF. Note that

E[(yi −Xiβ)2|Xi] = E{[yi − E(yi|Xi) + E(yi|Xi) −Xiβ]2|Xi}(284)

= E[yi − E(yi|Xi)|Xi]
2 + [E(yi|Xi) −Xiβ]2

= V [yi|Xi] + [E(yi|Xi) −Xiβ]2

which indicates that even if V [yi|Xi] is constant, we can have heteroscedasticity
because the linear PRF may be a better or a worse approximation of the non-
linear CEF at different values of Xi.

If the CEF is non-linear, it is almost sure that the residual of a linear PRF will
display heteroscedasticity.
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Heteroscedasticity is a problem also with a linear CEF

Consider this emblematic case:

yi =

{
1 with probability Pr(yi = 1) = P
0 with probability Pr(yi = 0) = 1 − P

(285)

Note that:
E(yi) = 1P + 0(1 − P ) = P (286)

Assume that the CEF for this model is linear and therefore:

E(Y |X) = Xβ (287)

Using this assumption:

Y = E(Y |X) + (Y − E(Y |X)) (288)

= Xβ + ε

where

ε =

{
1 −Xβ with probability P
−Xβ with probability 1 − P

(289)
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Advantages and disadvantages of the LPM

The LPM is:

• computationally simple and

• imposes little structure on the data

but its PRF is clearly heteroscedastic because

E(ε) = (1 −Xβ)P + (−Xβ)(1 − P ) (290)

= (1 −Xβ)Xβ + (−Xβ)(1 −Xβ) = 0.

but the variance is given by:

E(ε2) = (1 −Xβ)2Xβ + (−Xβ)2(1 −Xβ) (291)

= (1 −Xβ)Xβ

Observations for which Pi = Xiβ is close to 1 or 0 have relatively low variance
while observations with Pi = Xiβ close to .5 have relatively high variance.
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Testing for heteroscedasticity and its consequences

Traditional econometrics offers several tests for heteroscedasticity (see some in
Wooldridge Chapter 8).

However, for the reasons outlined above it is safer to start from the assumption
that your model is heteroscedastic.

Fortunately the consequences of heteroscedasticity are not dramatic in most
cases because it

• is irrelevant for unbiasedness of β̂;

• is irrelevant for consistency of β̂;

The only disturbing consequence of heteroscedasticity is that the variance-
covariance matrix of β̂ is biased if it is computed assuming homoscedasticity
which is not true.

If this happens our inference and hypothesis testing are wrong.
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The traditional solution: Generalized Least Squares

If we have reasons to assume that we know the functional form of the het-
eroscedasticity which affects the error term the solution consists in transforming
the heteroscedastic PRF into an homoscedastic one. Consider the regression

yi = Xiβ + ui (292)

and assume that
V ar(ui|Xi) = h(Xi)σ

2 = hiσ
2 (293)

Consider now the transformed model
yi√
hi

=
Xi√
hi
β +

ui√
hi

(294)

ỹi = X̃iβ + ũi (295)

The residual in the transformed PRF is no longer heteroscedastic.

V ar(ũi|Xi) =
1

hi
V ar(ui|Xi) = σ2 (296)
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Generalized Least Squares (cont.)

Using matrix notation, assume that for the PRF:

Y = Xβ + U (297)

the variance-covariance matrix of residuals is

E(UU ′|X) = σ2Ω (298)

where Ω is a n × n matrix. Note that this assumption include not only het-
eroscedasticity but also non zero covariance between disturbances of different
observations, a topic on which we come back below.

It is possible to define an invertible square matrix P such that

PP ′ = Ω (299)

(PP ′)−1 = P ′−1P−1 = Ω−1
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Generalized Least Squares (cont.)

If we now premultiply the original PRF by P−1

P−1Y = P−1Xβ + P−1U (300)

Ỹ = X̃β + Ũ

we obtain an homoscedastic model because

E(ŨŨ ′|X) = E(P−1UU ′P ′−1) (301)

= P−1E(UU ′|X)P ′−1

= σ2P−1ΩP ′−1

= σ2P−1PP ′P ′−1

= σ2In

and the OLS-MM estimator for this model is called GLS (Aitken) estimator

β̂GLS = [X ′Ω−1X ]−1X ′Ω−1Y (302)
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Generalized Least Squares (cont.)

It is easy to show that the GLS estimator is unbiased

E(β̂GLS|X) = β + [X ′Ω−1X ]−1X ′Ω−1E(U |X) = β (303)

if the the OLS-MM estimator is unbiased, and of course it ensures the correct
estimation of the variance-covariance matrix for inference and hypothesis testing

The problem is that the matrix Ω need to be estimated, if it is not known, in
order to make the GLS transformation feasible, which typically means:

• Run the original PRF to obtain inefficient but consistent estimates of the
residuals;

• Use these estimated residuals to estimate Ω;

• Apply the GLS transformation using Ω̂.

But this procedure, gives only consistent estimates because Ω is estimated.

Nowadays, the use of “Robust standard errors” is preferred to GLS.
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Generalized Least Squares and Linear Probability Models

In cases like the LPM, it is not even advisable to use the Feasible GLS transfor-
mation.

Predicted probabilities
P̂i = Xiβ̂

may lie outside the [0,1] range

This may produce non-sense probabilities for forecasting purposes and negative
estimated variances so that GLS cannot be implemented.

Moreover estimates are also very sensitive to extreme realizations of the X
variables.

In cases like this Robust Standard Errors are the only solution.
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Robust Standard Errors

We derived the asymptotic distribution of β̂ without assuming homoscedasticity

β̂ d−→ Normal(β, [E(X ′
iXi)

−1][E(X ′
iXi)U

2
i ][E(X ′

iXi)
−1]) (304)

and this variance-covariance matrix gives standard errors that are robust to
deviations from homoscedasticity.

These Standard Errors are typically larger than the ones derived under ho-
moscedasticity, but for practical purposes, we should not expect differences
larger than 30%. Angrist and Pischke suggest that larger differences are a sign
of more serious problems (e.g. programming errors).

Note also that in small sample they may be smaller than the ones derived under
homoschedasticity . Again when this happens it may be a sign of more serious
problems.

See Angrist and Pischke for simulations and a discussion.
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5.2 Clustering and the Moulton problem

The clustering of observations may originate much more serious problems than
heteroschedasticity.

Suppose that we are interested in the model

yig = β0 + β1xg + uig (305)

where:

• yig is the outcome of subject i in group j: for example the textscore of a
students in a class.

• xg is a determinant of the outcome that changes only across groups: for
example class size.

• uig is the unobservable component which is likely to be correlated across
subjects within the same group.

Even if classize where randomly assigned (e.g. Krueger (1999)), we cannot
assume independence of observations within groups.
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Modeling dependence across observations

Following Angrist and Pischke we can for example assume that

E(uigujg) = ρσ2
u > 0 (306)

where ρ is the intra-class correlation coefficient and σ2 is the residual variance.

This covariance structure may originate from the assumption that

uig = vg + ηig (307)

where both these components are assumed to be homoschedastic in order to
emphasize the correlation problem.

Moulton (1986) shows that this error structure can increase standard errors by
a considerable amounts and should not be neglected.
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Equal group size and constant within group regressors

Consider first the simpler case in which all groups are of the same size n and
the regressor is fixed within groups.

Moulton (1986) shows that the ratio between the variance that takes into ac-
count the correlation across observations, V ar(β̂), and the conventional vari-
ance V arc(β̂) which assumes zero correlation is

V ar(β̂1)

V arc(β̂1)
= 1 + (n− 1)ρ (308)

The square root of this term is called “the Moulton factor” in the literature:

• obviously no problem if ρ = 0 or n = 1;

• if ρ = 1 observations are duplicated but contain no additional information;

• with n = 100 and and ρ = .1 the Moulton factor is around 3.

The problem is even more serious for the realistic case in which the group sizes
change and the regressors change within groups.
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Variable group size and regressors within group regressors

In the more general case

yig = β0 + β1xig + uig (309)

the ratio is
V ar(β̂1)

V arc(β̂1)
= 1 +

[
V (ng)

n̄
+ n̄− 1

]
ρxρ (310)

where:

• ng is the size of group g;

• n̄ is the average group size;

• ρx is the intragroup correlation of xig defined as:

ρx =

∑
g

∑
i6=k(xig − x̄)(xkg − x̄)

V ar(xig)
∑

g ng(ng − 1)
(311)

which measure the extent to which the factor x changes in a similar way for
individuals in the same group. The extreme case of ρx = 1 is the case of a
factor that does not change within group.
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What makes the Moulton problem more serious

Clearly the Moulton problem is more serious when

• the correlation ρx of the regressor within group is larger;

• the group size is more variable;

• the average group size is larger, which, for given sample size means that

• the number of clusters is smaller.

For a given sample size, fewer clusters imply that there is less independent
information in the data, and this reduces the precision of thr estimates.

For a given number of clusters, it does not pay much to increase sample size
within groups unless the correlation of the regressor within groups is really low.

With constant regressors within group, adding more observations within groups
with the same number of clusters does not help.
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An illustration of the problem using Kruger (1999)

The study estimates the effects of class size on children’s percentile test scores,
finding β̂ = −0.62 with a conventional robust standard error of 0.09.

The parameters to evaluate the Moulton factor are

• ρx = 1 because class size does not change within a class;

• V (ng) = 17.1 because class size changes across between classes;

• the intraclass correlation of residuals is ρ = .31;

• the average class size n̄ = 19.4

which gives
V ar(β̂1)

V arc(β̂1)
≈ 7 (312)

and a Moulton factor of
√

7 = 2.62.

The correct standard error is therefore 0.24, almost three times larger.
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Some solutions to the Moulton problem

• Clustered standard errors
Liang and Zeger (1986) generalize the robust Variance-Covariance matrix of
White (1986) to take into account intra-group correlation:

V ar(β̂) = (X ′X)−1[
∑

g

(X ′
gΨ̂gXg)](X

′X)−1 (313)

Ψ̂g = aÛgÛ
′
g =




û2
1g û1gû2g · · · û1gûng

û2gû1g û2
2g · · · û2gûng

... ... ... ...

ûngû1g · · · û2
ng


 . (314)

Xg is the matrix of regressors for group g and a is a degrees of freedom
adjustment factor

This estimator is consistent when the number of groups increases, but is not
consistent when group size increases and the number of groups is fixed.

With a small number of clusters this solution may not be reliable.
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• Parametric solution
Use equation 310 to correct manually the standard errors; The Stata com-
mands “loneway” gives the necessary ingredients.

• Group averages
Use group averages, i.e. estimate:

ȳg = β0 + x̄gβ1 + ūg (315)

where upper bars denote the within cluster averages of the corresponding
variables.

Standard errors are asymptotically consistent with respect to the number of
groups (not group size)

Group size plays a useful for fixed number of clusters because when it in-
creases group averages are closer to be normally distributed.

In particular ūg is close to normal, improving the small sample properties of
the regression.
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• Group averages with micro-covariates
If the model is

yig = β0 +Xgβ1 +Wigδ + uig (316)

where Wig is a vector of covariates that changes within clusters, one can
proceed in two steps

i. In step 1 estimate:
yig = µg +Wigδ + uig (317)

where µg are dummies for the different clusters. Note that given 307 and
316

µg = β0 +Xgβ1 + vg (318)

ii. In step 2 estimate

µ̂g = β0 +Xgβ1 + {vg + (µg − m̂ug)} (319)

which needs GLS, for efficiency, using the inverse of the estimated variance
of the group level residual vg + (µg − m̂ug) as weight. (See Angrist Pischke
for the problems that this may cause with few clusters).
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A final note on the problem of clustering

Interestingly because of this problem, the large sample size of typical micro-
econometric studies may not help much!

Clustering is a pervasive and serious problem in microeconometrics.

A sort of ... revenge of macroeconometricians!
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6 Miscellaneous topics from Wooldridge

• Effects of data scaling on OLS statistics.

• Use of logs.

• Polynomial models.

• Goodness of fits and selection of regressors.

• Dummy variables as regressors.

• Interactions (in general and with dummmy variables

• Testing for differences across groups

• Measurement error

• Missing data

• Outliers and influential observations

• Non random sampling
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