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1 The Problem of Causality

• Does fertility depend on the number of storks?

• Does aspirin reduce the risk of heart attacks?

• Does an additional year of schooling increase future earnings?

• Are temporary jobs a stepping stone to permanent employment?

• Does EPL increase unemployment?

The answers to these questions (and to many others which affect our daily life)
involve the identification and measurement of causal links: an old problem in
philosophy and statistics.

We need a framework to study causality.
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1.1 A formal framework to think about causality

We have a population of units; for each unit we observe a variable D and a
variable Y .

We observe that D and Y are correlated. Does correlation imply causation?

In general no, because of:

• confounding factors;

• reverse causality.

We would like to understand in which sense and under which hypotheses one
can conclude from the evidence that D causes Y .

It is useful to think at this problem using the terminology of experimental anal-
ysis.
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• i is an index for the units in the population under study.

•Di is the treatment status:

Di = 1 if unit i has been exposed to treatment;

Di = 0 if unit i has not been exposed to treatment.

• Yi(Di) indicates the potential outcome according to treatment:

Yi(1) is the outcome in case of treatment;

Yi(0) is the outcome in case of no treatment;

The observed outcome for each unit can be written as:

Yi = DiYi(1) + (1−Di)Yi(0) (1)

This approach requires to think in terms of “counterfactuals”.
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1.2 The fundamental problem of causal inference

Definition 1. Causal effect.
For a unit i, the treatment Di has a causal effect on the outcome Yi if
the event Di = 1 instead of Di = 0 implies that Yi = Yi(1) instead of
Yi = Yi(0). In this case the causal effect of Di on Yi is

∆i = Yi(1)− Yi(0)

The identification and the measurement of this effect is logically impossible.

Proposition 1. The Fundamental Problem of Causal Inference.
It is impossible to observe for the same unit i the values Di = 1 and
Di = 0 as well as the values Yi(1) and Yi(0) and, therefore, it is impossible
to observe the effect of D on Y for unit i (Holland, 1986).

Another way to express this problem is to say that we cannot infer the effect
of a treatment because we do not have the counterfactual evidence i.e. what
would have happened in the absence of treatment.

4



1.3 The statistical solution

Statistics approaches the problem by aiming at population parameters like the
average causal effect for the entire population or for some interesting sub-groups.

The effect of treatment on a random unit (ATE):

E{∆i} = E{Yi(1)− Yi(0)} (2)

= E{Yi(1)} − E{Yi(0)}

The effect of treatment on the treated (ATT):

E{∆i | Di = 1} = E{Yi(1)− Yi(0) | Di = 1} (3)

= E{Yi(1) | Di = 1} − E{Yi(0) | Di = 1}

... ATNT, LATE ...

Are these effects interesting from the viewpoint of an economist?

Are these effects identified?
5



Naive estimator: is the comparison by treatment status informative?

A comparison of output by treatment status gives a biased estimate of the ATT:

E{Yi | Di = 1} − E{Yi | Di = 0} (4)

= E{Yi(1) | Di = 1} − E{Yi(0) | Di = 0}
= E{Yi(1) | Di = 1} − E{Yi(0) | Di = 1}

+E{Yi(0) | Di = 1} − E{Yi(0) | Di = 0}
= τ + E{Yi(0) | Di = 1} − E{Yi(0) | Di = 0}

where τ = E{∆i | Di = 1} is the ATT.

The difference between the left hand side (which we can estimate) and τ is the
sample selection bias equal to the difference between the outcomes of treated
and control subjects in the counterfactual situation of no treatment (i.e. at the
baseline).

The problem is that the outcome of the treated and the outcome of the control
subjects are not identical in the no-treatment situation.
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1.4 Randomized experiments

Consider two random samples C and T from the population. Since by con-
struction these samples are statistically identical to the entire population we
can write:

E{Yi(0)|i ∈ C} = E{Yi(0)|i ∈ T} = E{Yi(0)} (5)

and
E{Yi(1)|i ∈ C} = E{Yi(1)|i ∈ T} = E{Yi(1)}. (6)

Substituting 5 and 6 in 2 it is immediate to obtain:

E{∆i} ≡ E{Yi(1)} − E{Yi(0)} (7)

= E{Yi(1)|i ∈ T} − E{Yi(0)|i ∈ C}.

Randomization solves the Fundamental Problem of Causal Inference because it
allows to use the control units C as an image of what would happen to the
treated units T in the counterfactual situation of no treatment, and vice-versa.
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Lalonde (1986) gives a provocative description of the mistakes that a researcher
can make using observational data instead of experimental randomized data.

However, randomized experiments are not always a feasible solution for economists
because of:

• ethical concerns;

• difficulties of technical implementation;

• external validity and replication (consider instead structural estimation ...).

In these lectures we will study some alternatives to randomized experiments.

Each of these alternatives aims at getting as close as possible to a randomized
experiment.

Before doing so we analyse the problem of causality in a more familiar regression
framework.
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2 Causality in a regression framework

Consider the following specification of outcomes, with or without treatment:

Yi(1) = µ(1) + Ui(1) (8)

Yi(0) = µ(0) + Ui(0)

where E{Ui(1)} = E{Ui(0)} = 0. The causal effect of treatment for an
individual is

∆i = Yi(1)− Yi(0) (9)

= [µ(1)− µ(0] + [Ui(1)− Ui(0)]

= E{∆i} + [Ui(1)− Ui(0)].

It is the sum of:

E{∆i} = µ(1)− µ(0):
the common gain from treatment equal for every individual i;

[Ui(1)− Ui(0)]:
the idiosyncratic gain from treatment that differs for each individual i and
that may or may not be observed by the individual.
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The statistical effects of treatment in this model

i. The effect of treatment on a random individual (ATE).

E{∆i) = E{Yi(1)− Yi(0)} (10)

= E{Yi(1)} − E{Yi(0)}
= µ(1)− µ(0)

ii. The effect of treatment on the treated (ATT)

E{∆i | Di = 1) = E{Yi(1)− Yi(0) | Di = 1} (11)

= E{Yi(1) | Di = 1} − E{Yi(0) | Di = 1}
= µ(1)− µ(0) + E{Ui(1)− Ui(0) | Di = 1}

The two effects differ because of the idiosyncratic gain for the treated

E{Ui(1)− Ui(0) | Di = 1} (12)

This is the average gain that those who are treated obtain on top of the average
gain for a random person in the population.
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A regression with random coefficients

Let Di indicate treatment: using equation 1 the outcome can be written as:

Yi = µ(0) + [µ(1)− µ(0) + Ui(1)− Ui(0)]Di + Ui(0) (13)

= µ(0) + ∆iDi + Ui(0)

where Di = 1 in case of treatment and Di = 0 otherwise.

This is a linear regression with a random coefficient on the RHS variable Di.

(Figure on board: Differences between treated and control individuals.)
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2.1 Specification of the selection into treatment

The model is completed by the specification of the rule that determines the
participation of individuals into treatment:

D∗i = α + βZi + Vi (14)

where E{Vi} = 0 and

Di =

{
1 if D∗i ≥ 0
0 if D∗i < 0

(15)

D∗i is the (unobservable) criterion followed by the appropriate decision maker
concerning the participation into treatment of individual i. The decision maker
could be nature, the researcher or the individual.

Zi is the set of variables that determine the value of the criterion and therefore
the participation status. No randomness of coefficients is assumed here.

Zi could be a binary variable.
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The model in compact form

Yi = µ(0) + ∆iDi + Ui(0) (16)

D∗i = α + βZi + Vi (17)

Di =

{
1 if D∗i ≥ 0
0 if D∗i < 0

}
(18)

∆i = µ(1)− µ(0) + Ui(1)− Ui(0) (19)

= E{∆i} + Ui(1)− Ui(0)

E{Ui(1)} = E{Ui(0)} = E{Vi} = 0 (20)

Correlation between Ui and Vi is possible.

13



2.2 Problems with OLS estimation

2.2.1 Bias for the effect of treatment on a random person

Using 19 we can rewrite equation 16 as:

Yi = µ(0) + E{∆i}Di + Ui(0) + Di[Ui(1)− Ui(0)] (21)

= µ(0) + E{∆i}Di + εi

that tells us what we get from the regression of Yi on Di.

Problem:
E{εiDi} = E{Ui(1) | Di = 1}Pr{Di = 1} 6= 0 (22)

Therefore the estimated coefficient of Yi on Di is a biased estimate of E{∆i}
E{Yi | Di = 1} − E{Yi | Di = 0} = E{∆i}+ (23)

E{Ui(1)− Ui(0) | Di = 1} + E{Ui(0) | Di = 1} − E{Ui(0) | Di = 0}

The second line is the bias for the ATE
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Readjusting the second line of 23, the bias can be written as:

E{Yi | Di = 1} − E{Yi | Di = 0} = E{∆i}+ (24)

E{Ui(1) | Di = 1} − E{Ui(0) | Di = 0}

This bias is equal to the difference between two componenents:

• E{Ui(1) | Di = 1}
the unobservable outcome of the treated in case of treatment;

• E{Ui(0) | Di = 0}
the unobservable outcome of the controls in the case of no treatment.

In general, there is no reason to expect this difference to be equal to zero.

Consider a controlled experiment in which participation into treatment is random
because

• assignment to the treatment or control groups is random and

• there is full compliance with the assignment.
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Under these assumptions it follows that:

E{Ui(1)} = E{Ui(1) | Di = 1} = 0 (25)

E{Ui(0)} = E{Ui(0) | Di = 0} = 0

Hence, under perfect randomization, the treatment and the control groups are
statistically identical to the entire population and therefore

E{∆i} = E{Yi(1)} − E{Yi(0)} (26)

= E{Yi(1) | Di = 1} − E{Yi(0) | Di = 0}
= µ(1)− µ(0)

But, is the effect of treatment on a random person interesting in economic
examples?
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2.2.2 Bias for the effect of treatment on a treated person

Adding and subtracting DiE{Ui(1)− Ui(0) | Di = 1} in 21 and remembering
from 11 that E{∆i | Di = 1} = E{∆i} + E{Ui(1) − Ui(0) | Di = 1}, we
can rewrite 21 as:

Yi = µ(0) + E{∆i | Di = 1}Di + (27)

Ui(0) + Di[Ui(1)− Ui(0)− E{Ui(1)− Ui(0) | Di = 1}]
= µ(0) + E{∆i | Di = 1}Di + ηi

Using 27 we can define the OLS bias in the estimation of E{∆i | Di = 1}.

E{∆i | Di = 1} is the ATT which is equal to the common effect plus the
average idiosyncratic gain.

The error term is again correlated with the treatment indicator Di:

E{ηiDi} = E{DiUi(0) + Di[Ui(1)− Ui(0)− E{Ui(1)− Ui(0) | Di = 1}]}
= E{DiUi(0)} 6= 0. (28)
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Therefore, the estimated coefficient of Yi on Di is biased also with respect to
E{∆i | Di = 1}:

E{Yi | Di = 1} − E{Yi | Di = 0} = E{∆i | Di = 1}+ (29)

E{Ui(0) | Di = 1} − E{Ui(0) | Di = 0}

The second line in 29 is the bias for the ATT

E{Ui(0) | Di = 1} − E{Ui(0) | Di = 0}
is called mean selection bias and “tells us how the outcome in the base state
differs between program participants and non-participants. Absent any general
equilibrium effects of the program on non participants, such differences cannot
be attributed to the program.” (Heckman, 1997)

This bias is zero only when participants and non-participants are identical in the
base state i.e. when E{Ui(0)Di} = 0.

Would randomization help in the estimation of the ATT?
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3 Heckman’s solution for endogenous dummy variable models

Consider the case in which

• Ui(1) = Ui(0) : no idiosyncratic gain from treatment)

• ∆ = µ(1)− µ(0)

and we want to estimate the following model which allows for covariates Xi :

Yi = µ(0) + γXi + ∆Di + Ui(0)

Yi = µ + γXi + ∆Di + Ui (30)

D∗i = α + βZi + Vi (31)

Di =

{
1 if D∗i ≥ 0
0 if D∗i < 0

}
(32)

where E{Ui} = E{Vi} = 0 but E{DiUi} 6= 0.
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This model is commonly called the endogenous dummy variable model (see
Heckman (1978) and Maddala (1983).

OLS is biased for ∆ because

• those who have on average higher unobservable outcomes

• may also be more likely to enter into treatment (or viceversa).

Examples:

• Roy model (Roy, 1951).

• Parental background for returns to schooling (Willis-Rosen, 1979).

• Effects of unions on wages (Robinson, 1989)

• Labor supply of female workers (Heckman, 1978)

• ...
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The model rewritten as a switching regression model

We can transform the model in the following way:

Regime 1: if D∗i ≥ 0 Yi = µ + γXi + ∆ + Ui (33)

Regime 0: if D∗i < 0 Yi = µ + γXi + Ui (34)

or equivalently

Regime 1: if Vi ≥ −α− βZi Yi = µ + γXi + ∆ + Ui (35)

Regime 0: if Vi < −α− βZi Yi = µ + γXi + Ui (36)

where Regime 1 implies treatment.

This is an endogenous switching regression model in which the intercept differs
under the two regimes. More generally we could allow also the coefficient γ to
differ in the two regimes.

It would seem feasible to estimate separately the above two equations on the
two sub-samples that correspond to each regime and to recover an estimate of
∆ from the difference between the two estimated constant terms. But ...
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If E{DiUi} 6= 0, the error terms Ui do not have zero mean within each regime.

Regime 1: E{Ui | Vi ≥ −α− βZi} 6= E{Ui} = 0 (37)

Regime 0: E{Ui | Vi < −α− βZi} 6= E{Ui} = 0 (38)

The selection bias takes the form of an omitted variable specification error such
that the error term in each regime does not have zero mean.

If we could observe the two espectations in 37 and 38, we could include them
in the two regressions and avoid the misspecification.

Heckman’s great intution has been to find a way to estimate these expectations
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3.1 Some useful results on truncated normal distributions

Assume that U and V are jointly normally distributed with

• zero means,

• standard deviations respectively equal to σU and σV

• covariance equal to σUV .

Let φ(.) be the standard normal density and Φ(.) its CDF. The:

E

{
U

σU
| U
σU

> k1

}
=

φ(k1)

1− Φ(k1)
(39)

E

{
U

σU
| U
σU

< k2

}
= −φ(k2)

Φ(k2)
(40)

E

{
U

σU
| k1 <

U

σU
< k2

}
=
φ(k1)− φ(k2)

Φ(k2)− Φ(k1)
(41)

The ratios on the RHS are the Inverse Mill’s ratios.
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The following results also hold:

E

{
U

σU
| V
σV

> k

}
= σUVE

{
V

σV
| V
σV

> k

}
(42)

= σUV
φ(k)

1− Φ(k)
(43)

E

{
U

σU
| V
σV

< k

}
= σUVE

{
V

σV
| V
σV

< k

}
(44)

= −σUV
φ(k)

Φ(k)

These are precisely the results we need to solve the problem.
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3.2 The Heckman two-steps procedure

We cannot observe E{Ui | Vi ≥ −α − βZi} and E{Ui | Vi < −α − βZi}
but we can estimate them using the participation equation 31.

Without loss of generality we can assume σV = 1 (this parameter is anyway
not identified in a probit model). The steps of the procedure are as follows

i. Estimate a probit model for the participation into treatment using 31, and
retrieve the estimated absolute values of the Inverse Mill’s Ratios

M1i =
φ(−α̂− β̂Zi)

1− Φ(−α̂− β̂Zi)
=
φ(α̂ + β̂Zi)

Φ(α̂ + β̂Zi)
(45)

M0i =
φ(−α̂− β̂Zi)
Φ(−α̂− β̂Zi)

=
φ(α̂ + β̂Zi)

1− Φ(α̂ + β̂Zi)
(46)

where α̂ and β̂ are the estimated probit coefficients.
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ii. Estimate using OLS the equations for the two regimes augmented with the
appropriate Inverse Mill’s Ratios obtained in the first step

Regime 1: Yi = µ + γXi + ∆ + λ1M1i + νi (47)

Regime 0: Yi = µ + γXi + λ0M0i + νi (48)

where λ1 = σUσUV , λ0 = −σUσUV and E{νi} = 0 since the Inverse Mill’s
ratios have been consistently estimated.

With the above two steps we can get a consistent estimate of the treatment
effect ∆

We just need to subract the estimated constant in 48 from the estimated con-
stant in 47.

This two steps procedure generalizes in a full maximum likelihood estimation.
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3.3 Comments

• Note that λ̂1 is a consistent estimate of σUσUV while λ̂0 is a consistent
estimate of −σUσUV . Full maximum likelihood estimation, instead of the
two step procedure described above is, possible (and is provided by most of
the available software packages).

• Therefore, if the error terms are positively correlated (i.e. those who tend
to have higher outcomes are also more likely to participate into treatement)
we should expect a positive coefficient on the Inverse Mill’s ratio in Regime
1 and a negative coefficient in Regime 0.

• If the coefficients on the Inverse Mill’s Ratios λ̂1 and λ̂0 are not significantly
different form zero, this indicates that there is no endogenous selection in
the two regimes. So this procedure provides a test for the existence of
endogenous selection.
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• Suppose that Zi = Xi, i.e. there is no exogenous variable which determines
the selection into treatment and which is excluded from the outcome equa-
tion. In this case you could still run the procedure and get estimates of λ0
and λ1. But the identification would come only from the distributional as-
sumptions. Only because of the assumptions the Inverse Mill’s ratios would
be a non-linear transformation of the regressors Xi in the outcome equations.

• Therefore this procedure does not avoid the problem of finding a good in-
strument. And if we had one then using IV we could obtain estimates of
treatment effects without making unnecessary distributional assumptions.

• Check the performance of this procedure in LaLonde’s (1986) results
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4 Standard IV and solutions based on control functions

4.1 IV

Let’s continue to assume that

• Ui(1) = Ui(0) : no idiosyncratic gain from treatment;

• ∆ = µ(1)− µ(0)

so that the model in compact form is

Yi = µ(0) + ∆Di + Ui (49)

D∗i = α + βZi + Vi (50)

Di =

{
1 if D∗i ≥ 0
0 if D∗i < 0

}
(51)

E{Ui} = E{Vi} = 0 (52)
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If subjects are not randomly selected into treatment:

COV {U, V } = E(UV ) 6= 0 (53)

and OLS gives an inconsistent estimate of ∆.

plim{∆̂OLS} =
COV {Y,D}

V {D}
= ∆ +

COV {U,D}
V {D}

6= ∆ (54)

But under the assumptions

COV (Z,D) 6= 0 (55)

COV (U,Z) = 0. (56)

satisfied by our compact model, we have that:

COV {Y, Z}
COV {D,Z}

= ∆ +
COV {U,Z}
COV {D,Z}

= ∆ = plim{∆̂IV } (57)

Substituting the appropriate sample covariances on the LHS of 57 we get the
well known IV estimator ∆̂IV .

We will come back to it later with a different and inspiring perspective
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4.2 Control functions

We want to show that under the same identification assumptions one can use
a different estimation strategy first described by Heckman and Robb (1985).

This is the “control function” strategy which has advantages and disatvantages
with respect to IV depending on the specific model to be estimated.

Consider the reduced form

Di = π0 + π1Zi + εi (58)

where by construction
E(Zε) = 0 (59)

Note that the endogeneity of D derives from the fact that

E(Uε) 6= 0 (60)

because Z is exogenous.
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Consider the linear projection of U on ε

Ui = ρ0 + ρ1εi + qi (61)

where by construction and 56

E(qε) = 0

E(qZ) = 0

E(εZ) = 0 (62)

Then, plugging 61 into 49 we obtain:

Yi = µ(0) + ∆Di + ρ0 + ρ1εi + qi (63)

where we can consider εi as an explanatory variable.

But note that now

• given 58, D is a linear function of Z and ε;

• given 62, the error term q is uncorrelated with Z, ε and thus D;

• the OLS estimator of equation 63 is consistent for ∆.
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The control function method

• Estimate the reduced form (first stage):

Di = π0 + π1Zi + εi (64)

which gives consistent estimate π̂0 of π0 and π̂1 of π1;

• retrieve
ε̂i = Di − π̂0 − π̂1Zi (65)

and note that
εi = ε̂i + errori (66)

where errori is sampling error deriving from the estimation of π̂0 and π̂1;

• plug 66 into 49 and estimate consistently with OLS:

Yi = µ(0) + ∆Di + ρ0 + ρ1ε̂i + errori + qi (67)

The inclusion of the residual ε̂ controls for the endogeneity of D in the original
equation of interest although it does so with sampling error because π̂0 6= π0
and π̂1 6= π1.
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Comments

• See Lecture 6 of the NBER course by Imbens and Wooldridge for more
information on the control function method.

• Under the above assumptions, it is possible to test the null that ρ1 = 0;

• In the simple linear case described above, IV and control function estimates
are numerically identical.

• If the model is non-linear in D

– IV and control function estimates no longer coincide numerically;

– The assumption
E(UZ) = 0

is no longer sufficient (as instead in the IV case) to apply the control
function method, and the stronger assumption

E(U |Z) = 0

is needed: U and V must be independent not just uncorrelated.
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• The control function approach is likely more efficient but less robust then
standard IV. Specifically it might be inconsistent but more precise in cases
in which IV is consistent.

• If D is a discrete or count or truncated or censored variable,

– then appropriate non-linear models are needed to estimate the residuals,

– these models require additional functional form assumptions that make the
control function approach even less robuts but considerably more precise
if the assumptions are satisfied;

• In the binary case, one can assume normality and estimate a probit model
for the first stage; in this case the control function approach boils down to
the Heckman two step procedure that we have seen above and which rests
on the normality assumption.

• There are cases however in which the control function approach has no al-
ternatives: for example if the dependent variable is a censored duration and
the estimation of non linear hazard models is needed (see example in class).
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• As concluded by Imbens and Wooldrigde, except in cases in which

–D appears linearly in the main equation of interest and

– in which a linear reduced form can be estimated for it

the bottom line is that

– the control function approach imposes extra assumptions not imposed by
IV approches

– but in more complex models it is hard to beat the control function ap-
proach.
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5 Instrumental Variable interpreted as “quasi-experiments”

Consider the following notation:

• N units denoted by i.

• They are exposed to two possible levels of treatment: Di = 0 and Di = 1.

• Yi is a measure of the outcome.

• Zi is a binary indicator that denotes the assignment to treatment.

Three crucial issues:

i. assignment to treatment may or may not be random;

ii. assignment to treatment may or may not affect the outcome for given treat-
ment status;

iii. the correspondence between assignment and treatment may be imperfect.

Examples: Willis and Rosen (1979), Angrist (1990), Angrist and Krueger (1991),
Card (1995), Ichino and Winter-Ebmer (2004).
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Participation into treatment depends on the vector of assignments Z

Di = Di(Z) (68)

The outcome depends on the vector of assignments Z and treatments D:

Yi = Yi(Z,D) (69)

Note that in this framework we can define three (main) causal effects:

• the effect of assignment Zi on treatment Di;

• the effect of assignment Zi on outcome Yi;

• the effect of treatment Di on outcome Yi.

The first two of these effects are called intention-to-treat effects.

The Angrist-Imbens-Rubin Causal model (see Angrist et. al. 1996) defines the
minimum set of assumptions that ensures the identification of these effects for
a relevant subgroup in the population.
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5.1 Assumptions of the Angrist-Imbens-Rubin Causal model

Assumption 1. Stable Unit Treatment Value Assumption (SUTVA).
The potential outcomes and treatments of unit i are independent of the
potential assignments, treatments and outcomes of unit j 6= i:

i. Di(Z) = Di(Zi)

ii. Yi(Z,D) = Yi(Zi, Di)

Given this assumption we can write the intention-to-treat effects as:

Definition 2. The Causal Effect of Z on D for unit i is

Di(1)−Di(0)

Definition 3. The Causal Effect of Z on Y for unit i is

Yi(1, Di(1))− Yi(0, Di(0))
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Counterfactual reasoning requires to imagine that for each subject the sets of

• potential outcomes [Yi(0, 0), Yi(1, 0), Yi(0, 1), Yi(1, 1)]

• potential treatments [Di(0) = 0, Di(0) = 1, Di(1) = 0, Di(1) = 1]

• potential assignments [Zi = 0, Zi = 1]

exist, although only one item for each set is actually observed.

Implications of SUTVA for general equilibrium analysis and external validity.

If SUTVA holds, we can classify subjects according to the following useful ty-
pology.

40



Table 1: Classification of units according to assignment and treatment status

Zi = 0

Di(0) = 0 Di(0) = 1

Di(1) = 0 Never-taker Defier
Zi = 1

Di(1) = 1 Complier Always-taker

Examples: Willis and Rosen (1979), Angrist (1990), Angrist and Krueger (1991),
Card (1995), Ichino and Winter-Ebmer (2004).
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Assumption 2. Random Assignment (ignorability).
All units have the same probability of assignment to treatment:

Pr{Zi = 1} = Pr{Zj = 1}

Given SUTVA and random assignment we can identify and estimate the two
intention to treat causal effects:

E{Di | Zi = 1} − E{Di | Zi = 0} =
COV {DiZi}
V AR{Zi}

(70)

E{Yi | Zi = 1} − E{Yi | Zi = 0} =
COV {YiZi}
V AR{Zi}

(71)

Note that the ratio between these effects is the IV estimand
COV {Y, Z}
COV {D,Z}

(72)

Is this the causal effect of Di on Yi?
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Assumption 3. Non-zero average causal effect of Z on D.
The probability of treatment must be different in the two assignment
groups:

Pr{Di(1) = 1} 6= Pr{Di(0) = 1}
or equivalently

E{Di(1)−Di(0)} 6= 0

This assumption requires that the assignment to treatment is correlated with
the treatment indicator.

It is easy to test.

It is the equivalent of the“first stage” in the conventional IV approach.
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Assumption 4. Exclusion Restrictions.
The assignment affects the outcome only through the treatment and we
can write

Yi(0, Di) = Yi(1, Di) = Yi(Di).

It cannot be tested because it relates quantities that can never be observed
jointly:

Yi(0, Di) = Yi(1, Di)

It says that given treatment, assignment does not affect the outcome. So we
can define the causal effect of Di on Yi with the following simpler notation:

Definition 4. The Causal Effect of D on Y for unit i is

Yi(1)− Yi(0)
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Are the first four assumptions enough?

We can now establish the relationship at the unit level between the intention to
treat effects of Z on D and Y and the causal effect of D on Y .

Yi(1, Di(1))− Yi(0, Di(0))

= Yi(Di(1))− Yi(Di(0))

= [Yi(1)Di(1) + Yi(0)(1−Di(1))]−
[Yi(1)Di(0) + Yi(0)(1−Di(0))]

= (Di(1)−Di(0))(Yi(1)− Yi(0)) (73)

At the unit level the causal effect of Z on Y is equal to the product of the the
causal effect of Z on D times the causal effect of D on Y .

Can we take the expectation of both sides of 73 and identify the average causal
effect of D on Y :

E(Yi(1)− Yi(0))?
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And the answer is “no”, because:

E {Yi(1, Di(1))− Yi(0, Di(0))}
= E{(Di(1)−Di(0))(Yi(1)− Yi(0))}
= E{Yi(1)− Yi(0) | Di(1)−Di(0) = 1}Pr{Di(1)−Di(0) = 1} −
E{Yi(1)− Yi(0) | Di(1)−Di(0) = −1}Pr{Di(1)−Di(0) = −1}

(74)

Equation 74 shows that even with the four assumptions that were made so far
we still have an identification problem.

What we observe (the left hand side), is equal to the weighted difference between
the average effect for compliers and the average effect for defiers.

To solve this problem we need a further and last assumption.
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Table 2: Causal effect of Z on Y according to assignment and treatment status

Zi = 0

Di(0) = 0 Di(0) = 1

Di(1) = 0 Never-taker Defier
Yi(1, 0)− Yi(0, 0) = 0 Yi(1, 0)− Yi(0, 1) = −(Yi(1)− Yi(0))

Zi = 1

Di(1) = 1 Complier Always-taker
Yi(1, 1)− Yi(0, 0) = Yi(1)− Yi(0) Yi(1, 1)− Yi(0, 1) = 0
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In the previous table:

• Each cell contains the causal effect of Z on Y (the numerator of LATE).

• The SUTVA assumption allows us to write this causal effect for each unit
independently of the others.

• The random assignment assumption allows us to identify the causal effect
for each group.

• Exclusion restrictions ensure that the causal effect is zero for the always- and
never-takers; it is non-zero only for compliers and defiers (via D).

• The assumption of strong monotonicity ensures that there are no defiers and
that compliers exist.

All this ensures that the numerator of the LATE estimator is the average effect of
Z on Y for the group of compliers (absent general equilibrium considerations).
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Assumption 5. Monotonicity.
No one does the opposite of his/her assignment, no matter what the as-
signment is:

Di(1) ≥ Di(0) ∀i (75)

This assumption amounts to excluding the possibility of defiers.

The combination of Assumptions 3 and 5 is called Strong Monotonicity

Di(1) ≥ Di(0) ∀i with strong inequality for at least some i (76)

and ensures that:

• there is no defier and

• there exists at least one complier.

Since now defiers do not exist by assumption, we can use equation 74 to identify
the average treatment effect for compliers.
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5.2 The Local Average Treatment Effect

Equation 74 now is:

E {Yi(1, Di(1))− Yi(0, Di(0))}
= E{Yi(1)− Yi(0) | Di(1)−Di(0) = 1}Pr{Di(1)−Di(0) = 1}

(77)

Rearranging this equation, the Local Average Treatment Effect is defined as:

E{Yi(1)− Yi(0) | Di(1)−Di(0) = 1} =
E{Yi(1, Di(1))− Yi(0, Di(0))}

Pr{Di(1)−Di(0) = 1}

Definition 5. LATE.
The Local Average Treatment Effect is the average effect of treatment for
those who change treatment status because of a change of the instrument;
i.e. the average effect of treatment for compliers.
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Equivalent expressions for the LATE estimator:

E{Yi(1)− Yi(0) | Di(1) = 1, Di(0) = 0}

=
E{Yi | Zi = 1} − E{Yi | Zi = 0}
Pr{Di(1) = 1} − Pr{Di(0) = 1}

(78)

=
E{Yi | Zi = 1} − E{Yi | Zi = 0}
E{Di | Zi = 1} − E{Di | Zi = 0}

(79)

=
COV {Y, Z}
COV {D,Z}

(80)

• The IV estimand is the LATE.

• The LATE is the only treatment effect that can be estimated by IV, unless
we are willing to make further assumptions.
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Table 3: Frequency of each type of unit in the population

Zi = 0

Di(0) = 0 Di(0) = 1

Di(1) = 0 Never-taker Defier
Pr{Di(1) = 0, Di(0) = 0} Pr{Di(1) = 0, Di(0) = 1}

Zi = 1

Di(1) = 1 Complier Always-taker
Pr{Di(1) = 1, Di(0) = 0} Pr{Di(1) = 1, Di(0) = 1}
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In the previous table:

• The denominator of the Local Average Treatment Effect is the frequency of
compliers.

• Note that the frequency of compliers is also the average causal effect of Z
on D (see eq 79):

E{Di | Zi = 1} − E{Di | Zi = 0} =

Pr{Di = 1 | Zi = 1} − Pr{Di = 1 | Zi = 0}.

• Indeed the LATE-IV estimator is the ratio of the two average intention-to-
treat effects: the effect of Z on Y divided by the effect of Z on D.
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5.3 Comments on the LATE interpretation of IV

i. The AIR approach clarifies the set of assumptions under which the IV esti-
mand is an average causal effect, but shows that this is not the ATT.

ii. To identify the ATT the conventional approach implicitly assumes that the
causal effect is the same for all treated independently of assignment.

iii. Translated in the AIR framework this conventional assumption is (see the
debate Heckman-AIR in Angrist et al., 1996):

E{Yi(1)−Yi(0) | Zi, Di(Zi) = 1} = E{Yi(1)−Yi(0) | Di(Zi) = 1} (81)

E{Yi(1)− Yi(0) | Di(1) = 1;Di(0) = 1} (82)

= E{Yi(1)− Yi(0) | Di(1) = 1;Di(0) = 0}
i.e., the causal effect of D on Y must be the same for compliers and always-
taker. Typically this assumption cannot be tested and is unlikely to hold in
many applications.
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iv. The conventional approach hides also the assumption of strong monotonicity.

v. The AIR approach concludes that the only causal effect that IV can identify
with a minimum set of assumptions is the causal effect for compliers, i.e.
the LATE: the effect of treatment for those who change treatment status
because of a different assignment.

vi. Intuitively this makes sense because compliers are the only group on which
the data can be informative :

• compliers are the only group with units observed in both treatments (given
that defiers have been ruled out).

• always takers and never-takers are observed only in one treatment.

• The LATE is analogous to a regression coefficient estimated in linear mod-
els with unit effects using panel data. The data can only be informative
about the effect of regressors on units for whom the regressor changes
over the period of observation.
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vii. The conventional approach to IV, however, argues that the LATE is a con-
troversial parameter because it is defined for an unobservable sub-population
and because it is instrument dependent. And therefore it is no longer clear
which interesting policy question it can answer.

viii. Furthermore it is difficult to think about the LATE in a general equilibrium
context

ix. Hence, the conventional approach concludes that it is preferable to make
additional assumptions, in order to answer more interesting and well posed
policy questions.

x. Yet there are many relevant positive and normative questions for which the
LATE seems to be an interesting parameter in addition to being the only one
we can identify without making unlikely assumptions.
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6 Regression Discontinuity Designs

In the absence of random assignment, an alternative favorable situation for the
identification of treatment effects arises when participation into treatment is
determined by a sharp Regression Discontinuity Design (RDD)

In this design, assignment to treatment solely depends on whether an observable
pre-intervention variables satisfy a set of conditions known to the analyst.

For examples, units willing to participate are divided into two groups according
to whether or not a pre-intervention measure exceeds a known threshold, but
only units scoring above that threshold are assigned to the program.

In a neighborhood of the threshold for selection a sharp RDD presents some
features of a pure experiment.

Examples: Angrist and Lavy (1999), Van der Klauuw (2002), Di Nardo and Lee
(2004), Lee (2005), Ichino et al. (2013).
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The comparison of mean outcomes for participants and non-participants at the
margin allows to control for confounding factors and identifies the mean impact
of the intervention locally at the threshold for selection.

For identification at the cut-off point to hold it must be the case that any
discontinuity in the relationship between the outcome of interest and the variable
determining the treatment status is fully attributable to the treatment itself.

The sharp RDD features two main limitations:

• assignment to treatment must depend only on observable pre-intervention
variables

• identification of the mean treatment effect is possible only at the threshold
for selection.

Matters complicate further in the case of a fuzzy RDD, i.e. a situation in which
there is imperfect compliance with the assignment rule at the threshold.
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6.1 Treatment effects in a RDD

• (Y1, Y0) are the two potential outcomes induced, respectively, by participation
and non-participation.

• β = Y1 − Y0 is the causal effect of the treatment, which is not observable.

•We consider the general case in which β may vary across units.

• I is the binary variable that denotes treatment status, with I = 1 for partic-
ipants and I = 0 for non-participants.

• If the assignment is determined by randomization and subjects comply with
the assignment:

(Y1, Y0)⊥I.

• Given randomization, we can identify the mean impact

E{β} = E{Y1|I = 1} − E{Y0|I = 0}, (83)
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Formal characterization of an RDD

Following Battistin and Rettore (2006) and Hahn et al.(2001), a RDD arises
when:

• treatment status depends on an observable unit characteristic S;

• there exist a known point in the support of S where the probability of par-
ticipation changes discontinuously.

If s̄ is the discontinuity point, then a RDD is defined if

Pr{I = 1|s̄+} 6= Pr{I = 1|s̄−}. (84)

where s̄+ and s̄− refer to units marginally above or below s̄.

Without loss of generality, we also assume

Pr{I = 1|s̄+} − Pr{I = 1|s̄−} > 0.
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Sharp and Fuzzy RDD

Following Trochim (1984), the distinction between sharp and fuzzy RDD de-
pends on the size of the discontinuity in (84).

A sharp design occurs when the probability of participating conditional on S
steps from zero to one as S crosses the threshold s̄.

In this case, the treatment status depends deterministically on whether units’
values of S are above s̄

I = 1(S ≥ s̄). (85)

A fuzzy design occurs when the size of the discontinuity at s̄ is smaller than
one.

In this case the probability of treatment jumps at the threshold, but it may be
greater than 0 below the threshold and smaller than 1 above.
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6.2 Identification in a sharp RDD

The observed outcome can be written as Y = Y0 + I(s)β

The difference of observed mean outcomes marginally above and below s̄ is

E{Y |s̄+} − E{Y |s̄−} (86)

= E{Y0|s̄+} − E{Y0|s̄−} + E{I(s)β|s̄+} − E{I(s)β|s̄−}
= E{Y0|s̄+} − E{Y0|s̄−} + E{β|s̄+}

where the last equality holds in a sharp design because I = 1(S ≥ s̄).

It follows that the mean treatment effect at s̄+ is identified if

Condition 1. The mean value of Y0 conditional on S is a continuous
function of S at s̄:

E{Y0|s̄+} = E{Y0|s̄−}
This condition for identification requires that in the counterfactual world, no
discontinuity takes place at the threshold for selection.

62



Note that condition 1 allows to identify only the average impact for subjects in
a right-neighborhood of s̄.

Thus, we obtain a local version of the average treatment effect in (83)

E{β|s̄+} = E{Y |s̄+} − E{Y |s̄−}.
which is the effect of treatment on the treated (ATT) in this context.

The identification of E{β|s̄−} (the effect of treatment on the non-treated),
requires a similar continuity condition on the conditional mean E{Y1|S}.

In practice, it is difficult to think of cases where Condition 1 is satisfied and the
same condition does not hold for Y1.

The sharp RDD represents a special case of selection on observables (on which
we will come back in Section 7).
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Moreover, assuming that the distribution of (Y0, Y1) as a function of S is con-
tinuous at the discontinuity point, implies

(Y1, Y0)⊥I|S = s̄. (87)

Because of this property, a sharp RDD is often referred to as a quasi-experimental
design (Cook and Campbell, 1979).

If the sample size is large enough, E{Y |s̄+} and E{Y |s̄−} can be estimated
using only data for subjects in a neighborhood of the discontinuity point.

If the sample size is not large enough, one can make some parametric assump-
tions about the regression curve away from s̄ and use also data for subjects
outside a neighborhood of the discontinuity point.

Typically this involves the parametric estimation of two polynomials of Y as a
function of S on the two sides of the discontinuity, measuring how they differ
for values of S that approach the discontinuity.
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Evidence on the validity of the identification condition

An attractive feature of a RDD is that it allows to test the validity of the
identification condition (87).

These tests are based on the idea of comparing units marginally above and
below the threshold with respect to variables which:

• cannot be affected by the treatment;

• are affected by the same unobservables which are relevant for the outcome.

Finding that the two groups of subjects present systematic differences in the
values of these variables would cast serious doubts on the validity of the iden-
tification condition (87).
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6.3 Identification in a fuzzy RDD

If compliance with the design implied by S and s̄ is imperfect, a fuzzy RDD
arises.

In this case, the continuity of Y0 and Y1 at s̄ is no longer sufficient to ensure
the orthogonality condition in (87).

Now the treatment status depends not only on S but also on unobservables,
and the following condition is needed:

Condition 2. The triple (Y0, Y1, I(s)) is stochastically independent of S
in a neighborhood of s̄.

The stochastic independence between I(s) and S in a neighborhood of s̄ corre-
sponds to imposing that assignment at s̄ takes place as if it were randomized.
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The stochastic independence between (Y1, Y0) and S at s̄ corresponds to a
standard exclusion restriction.

It imposes that in a neighborhood of s̄, S affects the outcome only through its
effect on the treatment I .

In other words, there is no direct effect of S on the outcome for given treatment
status in a neighborhood of the threshold.

If Condition 2 holds we are in the familiar IV framework of Section 5:

• S is the random assignment to treatment and plays the same role of Z.

• I is treatment status and plays the same role of D.

• Y0, Y1 are the potential outcomes and Y is the observed outcome.

The categorization of subjects into always takers, never takers, compliers
and defiers applies as well.
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If Condition 2 is satisfied, the outcome comparison of subjects above and below
the threshold gives:

E{Y |s̄+} − E{Y |s̄−}
= E{β|I(s̄+) > I(s̄−)}Pr{I(s̄+) > I(s̄−)}
− E{β|I(s̄+) < I(s̄−)}Pr{I(s̄+) < I(s̄−)}.

The right hand side is the difference between:

• the average effect for compliers, times the probability of compliance;

• the average effect for defiers, times the probability of defiance.

As in the IV framework:

• always takers and never takers do not contribute because their potential
treatment status does not change on the two sides of the threshold;

• for the identification of a meaningful average effect of treatment an additional
assumption of strong monotonicity is needed.
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Condition 3. Participation into the program is monotone around s̄, that
is it is either the case that I(s̄+) ≥ I(s̄−) for all subjects or the case that
I(s̄+) ≤ I(s̄−) for all subjects.

This monotonicity condition excludes the existence of defiers, so that the out-
come comparison of subjects above and below the threshold gives:

E{β|I(s̄+) 6= I(s̄−)} =
E{Y |s̄+} − E{Y |s̄−}
E{I|s̄+} − E{I|s̄−}

, (88)

The right hand side of (88) is the mean impact on those subjects in a neigh-
borhood of s̄ who would switch their treatment status if the threshold for par-
ticipation switched from just above their score to just below it.

It is the analog of the LATE in this context.

The denominator in the right-hand side of (88) identifies the proportion of
compliers at s̄.

69



6.4 A partially fuzzy design

Battistin and Rettore (2001) consider an interesting particular case:

• Subjects with S above a known threshold s̄ are eligible to participate in a
program but may decide not to participate;

• Unobservables determine participation given eligibility;

• Subjects with S below s̄ cannot participate, under any circumstance.

This is a “one-sided” fuzzy design, in which the population is divided into three
groups of subjects:

• eligible participants;

• eligible non-participants;

• non-eligible.

Despite the fuzzy nature of this design, the mean impact for all the treated
(ATT) can be identified under Condition 1 only, as if the design were sharp.
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Condition 1 says that:

E{Y0|s̄+} = E{Y0|s̄−}. (89)

and

E{Y0|s̄+} = E{Y0|I = 1, s̄+}φ + E{Y0|I = 0, s̄+}(1− φ),

where φ = E{I|s̄+} is the probability of self-selection into the program condi-
tional on marginal eligibility.

The last expression combined with (89) yields

E{Y0|I = 1, s̄+} =
E{Y0|s̄−}

φ
− E{Y0|I = 0, s̄+}1− φ

φ
. (90)

The counterfactual mean outcome for marginal participants is a linear combina-
tion of factual mean outcomes for marginal ineligibles and for marginal eligibles
not participants.

The coefficients of this combination add up to one and are a function of φ,
which is identified from observed data.

71



Hence, equation (90) implies that the mean impact on participants is identified:

E{β|I = 1, s̄+} = E(Y1|I = 1, s̄+)− E(Y0|I = 1, s̄+).

Note that in this setting, by construction there are no always takers, although
there may be never takers, who are the eligible non-participants.

All the treated are compliers as in the experimental framework of Bloom (1984).

This result is relevant because such a one-sided fuzzy design is frequently en-
countered in real application.

Less frequent, however, is the availability of information on eligible non partici-
pants, which is necessary for identification.
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6.5 A regression framework for a fuzzy RDD (Angrist and Lavy, 1999)

Under the assumptions of a fuzzy design consider the equation

Y = g(S) + βT + ε (91)

where:

• Y is the observed outcome;

• g(S) is a polinomial in the score S;

• T is a binary indicator that denotes actual exposure to treatment;

• I = 1(S ≥ s̄) is the side of the threshold on which each subject is located.

The IV-LATE estimate of 91 using I as an instrument is equivalent to the RDD
comparison of outcomes for subjects marginally above or below the threshold

Both methods identify the mean impact on those subjects in a neighborhood
of s̄ who would switch their treatment status if the threshold for participation
switched from just above their score to just below it.
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6.6 Comments on RDD

• A sharp RDD identifies the mean impact of a treatment for a broader pop-
ulation than the one for which identification is granted by a fuzzy RDD.

•Whether the parameter identified by a fuzzy RDD is policy relevant depends
on the specific case.

• A fuzzy RDD requires stronger identification conditions.

• Some of the simplicity of the RDD is lost moving to a fuzzy design.

• Both sharp and fuzzy designs cannot identify the impact for subjects far
away from the discontinuity threshold.

• A RDD framework naturally suggests ways to test the validity of the identi-
fication assumptions.

• RDDs are promising tools for the identification of causal effects.
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7 Selection on observables and matching

Matching methods may offer a way to estimate average treatment effects when:

• controlled randomization is impossible and

• there are no convincing natural experiments providing a substitute to ran-
domization (a RDD, a good instrument ...).

But these methods require the debatable assumption of selection on observ-
ables (or unconfoundedness, or conditional independence):

• the selection into treatment is completely determined by variables that can
be observed by the researcher;

• “conditioning” on these observable variables, the assignment to treatment is
random.

Given this assumption, these methods base the estimation of treatment effects
on a “very careful” matching of treated and control subjects.
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Apparently it sounds like ... assuming away the problem.

However, matching methods have the following desirable features:

• The observations used to estimate the causal effect are selected without
reference to the outcome, as in a controlled experiment.

• They dominate other methods based on selection on observables (like OLS),
thanks to a more convincing comparison of treated and control units;

• They offer interesting insights for a better understanding of the estimation
of causal effects.

• There is some (debated) evidence suggesting that they contribute to reduce
the selection bias
(see Dehejia and Wahba 1999; Dehejia 2005; Smith and Todd 2005a, 2005b).

As a minimum, matching methods provide a convincing way to select the ob-
servations on which other estimation methods can be later applied.
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7.1 Notation

• i denotes subjects in a population of size N .

•Di ∈ {0, 1} is the treatment indicator for unit i.

• Yi(Di) are the potential outcomes in the two treatment situations.

– Yi(1) is the outcome in case of treatment;

– Yi(0) is the outcome in case of no treatment.

• the observed outcome for unit i is:

Yi = DiYi(1) + (1−Di)Yi(0) (92)

• ∆i is the causal treatment effect for unit i defined as

∆i = Yi(1)− Yi(0) (93)

which cannot be computed because only one of the two counterfactual treat-
ment situations is observed.
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We want to estimate the average effect of treatment on the treated (ATT):

τ = E{∆i|Di = 1} = E{Yi(1)− Yi(0)|Di = 1} (94)

The problem is the usual one: for each subject we do not observe the outcome
in the counterfactual treatment situation.

Note that this can be viewed as a problem of “missing data”.

Matching methods are a way to “impute” missing observations for counterfac-
tual outcomes.

From this viewpoint, their validity stands on the assumption that the counter-
factual observations are “missing at random” (Rubin, 1974).

Remember (see Section 1) that in this situation a comparison of output by
treatment status gives a biased estimate of the ATT.
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The case of random assignment to treatment

If assignment to treatment is random:

Y (1), Y (0) ⊥ D (95)

And the missing information does not create problems because:

E{Yi(0)|Di = 0} = E{Yi(0)|Di = 1} = E{Yi(0)} (96)

E{Yi(1)|Di = 0} = E{Yi(1)|Di = 1} = E{Yi(1)} (97)

and substituting 96 and 97 in 94 it is immediate to obtain:

τ ≡ E{∆i | Di = 1} (98)

≡ E{Yi(1)|Di = 1} − E{Yi(0) | Di = 1}
= E{Yi(1)|Di = 1} − E{Yi(0)|Di = 0}
= E{Yi|Di = 1} − E{Yi|Di = 0}.

Randomization ensures that the missing information is “missing completely at
random” and thus the sample selection bias is zero:

E{Yi(0) | Di = 1} − E{Yi(0) | Di = 0} = 0 (99)
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7.2 Selection on observables

Let X denote a set of pre-treatment characteristics of subjects.

Definition 6. Unconfoundedness
Assignment to treatment is unconfounded given pre-treatment variables
if

Y (1), Y (0) ⊥ D | X (100)

Note that assuming unconfoundedness is equivalent to say that:

• within each cell defined by X treatment is random;

• the selection into treatment depends on observables X up to a random factor.

Pure randomization is a particularly strong version of “unconfoundedness”,
in which the assignment to treatment is unconfounded independently of pre-
treatment variables.
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ATT assuming unconfoundedness

E{Yi(0)|Di = 0, X} = E{Yi(0)|Di = 1, X} = E{Yi(0)|X} (101)

E{Yi(1)|Di = 0, X} = E{Yi(1)|Di = 1, X} = E{Yi(1)|X} (102)

Using these expressions, we can define for each cell defined by X

δx ≡ E{∆i|X} (103)

≡ E{Yi(1)|X} − E{Yi(0)|X}
= E{Yi(1)|Di = 1, X} − E{Yi(0)|Di = 0, X}
= E{Yi|Di = 1, X} − E{Yi|Di = 0, X}.

Using the Law of Iterated expectations, the ATT is given by:

τ ≡ E{∆i|Di = 1} (104)

= E{E{∆i|Di = 1, X} | Di = 1}
= E{ E{Yi|Di = 1, X} − E{Yi|Di = 0, X} |Di = 1}
= E{δx|Di = 1}

where the outer expectation is over the distribution of X|Di = 1.
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Matching and regression

Unconfoundedness suggests the following strategy for the estimation of the ATT:

i. stratify the data into cells defined by each particular value of X ;

ii. within each cell (i.e. conditioning on X) compute the difference between the
average outcomes of the treated and the controls;

iii. average these differences with respect to the distribution of X in the popu-
lation of treated units.

This strategy (called exact matching) raises the following questions:

• Is this strategy different from the estimation of a linear regression of Y on D
controlling non parametrically for the full set of main effects and interactions
of the covariates X(i.e. a fully saturated regression)?

• Is this strategy feasible?

Note that both matching and regression assume selection on observables.
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In which sense matching and regression differ?

The essential difference between

• regression on a fully saturated model and

• exact matching

is the weighting scheme used to take the average of the treatment effects at
different values of the covariates.

Regression gives more weights to cells in which the proportion of treated and
non-treated is similar.

Matching gives more weights to cells in which the proportion of treated is high.

Angrist (1998) gives an interesting example of the differences between matching
and regression.

See Ichino et al. (2014) for an application based on exact matching.
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Are matching and regression feasible: the dimensionality problem

Both exact matching and fully saturated regression may not be feasible if the
sample is small, the set of covariates is large and many of them are multivalued,
or, worse, continue.

•With K binary variables the number of cells is 2K .

• The number increases further if some variables take more than two values.

• If the number of cells is very large with respect to the size of the sample it
is possible that cells contain only treated or only control subjects.

Rosenbaum and Rubin (1983) propose an equivalent and feasible estimation
strategy based on the concept of Propensity Score and on its properties which
allow to reduce the dimensionality problem.

It is important to realize that regression with a non-saturated model is not a
solution and may lead to seriously misleading conclusions.
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7.3 Matching based on the Propensity Score

Definition 7. Propensity Score (Rosenbaum and Rubin, 1983)
The propensity score is the conditional probability of receiving the treat-
ment given the pre-treatment variables:

p(X) ≡ Pr{D = 1|X} = E{D|X} (105)

Lemma 1. Balancing of pre-treatment variables given the propensity score
If p(X) is the propensity score

D ⊥ X | p(X) (106)

Lemma 2. Unconfoundedness given the propensity score
Suppose that assignment to treatment is unconfounded, i.e.

Y (1), Y (0) ⊥ D | X

Then assignment to treatment is unconfounded given the propensity score,
i.e

Y (1), Y (0) ⊥ D | p(X) (107)
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Proof of Lemma 1:

First:

Pr{D = 1|X, p(X)} = E{D|X, p(X)} (108)

= E{D|X} = Pr{D = 1|X}
= p(X)

Second:

Pr{D = 1|p(X)} = E{D|p(X)} (109)

= E{E{D|X, p(X)}|p(X)} = E{p(X)|p(X)}
= p(X)

Hence:
Pr{D = 1|X, p(X)} = Pr{D = 1|p(X)} (110)

which implies that conditionally on p(X) the treatment and the observables are
independent. QED.
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Proof of Lemma 2:

First:

Pr{D = 1|Y (1), Y (0), p(X)} = E{D|Y (1), Y (0), p(X)} (111)

= E{E{D|X, Y (1), Y (0)}|Y (1), Y (0), p(X)}
= E{E{D|X}|Y (1), Y (0), p(X)}
= E{p(X)|Y (1), Y (0), p(X)}
= p(X)

where the step from the second to the third line uses the unconfoundedness
assumption. Furthermore, because of Lemma 1

Pr{D = 1|p(X)} = p(X) (112)

Hence
Pr{D = 1|Y (1), Y (0), p(X)} = Pr{D = 1|p(X)} (113)

which implies that conditionally on p(X) the treatment and potential outcomes
are independent. QED.

87



The propensity score and its properties make it possible to match cases and
controls on the basis of a monodimensional variable.

E{Yi(0)|Di = 0, p(Xi)} = E{Yi(0)|Di = 1, p(Xi)} = E{Yi(0)|p(Xi)}
E{Yi(1)|Di = 0, p(Xi)} = E{Yi(1)|Di = 1, p(Xi)} = E{Yi(1)|p(Xi)}

Using these expressions, we can define for each cell defined by p(X)

δp(x) ≡ E{∆i|p(Xi)} (114)

≡ E{Yi(1)|p(Xi)} − E{Yi(0)|p(Xi)}
= E{Yi(1)|Di = 1, p(Xi)} − E{Yi(0)|Di = 0, p(Xi)}
= E{Yi|Di = 1, p(Xi)} − E{Yi|Di = 0, p(Xi)}.

Using the Law of Iterated expectations, the ATT is given by:

τ = E{∆i|Di = 1} (115)

= E{E{∆i|Di = 1, p(Xi)}|Di = 1}
= E{ E{Yi(1)|Di = 1, p(Xi)} − E{Yi(0)|Di = 0, p(Xi)} |Di = 1}
= E{δp(x)|Di = 1}

where the outer expectation is over the distribution of p(Xi)|Di = 1.
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Implementation of matching based on the pscore

Two sequential steps are needed.

i. Estimation of the propensity score
This step is necessary because the “true” propensity score is unknown and
therefore the propensity score has to be estimated.

ii. Estimation of the average effect of treatment given the propensity score
Ideally in this step, we would like to

• match cases and controls with exactly the same (estimated) propensity
score;

• compute the effect of treatment for each value of the (estimated) propen-
sity score (see equation 114).

• obtain the average of these conditional effects as in equation 115.

This is infeasible in practice because it is rare to find two units with exactly
the same propensity score.
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There are, however, several alternative and feasible procedures to perform
this step:

• Stratification on the Score;

• Nearest neighbor matching on the Score;

• Radius matching on the Score;

• Kernel matching on the Score;
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7.4 Estimation of the Propensity Score

Apparently, the same dimensionality problem that prevents the estimation of
treatment effects should also prevent the estimation of propensity scores.

This is, however, not the case thanks to the balancing property of the propen-
sity score (Lemma 1) according to which:

• observations with the same propensity score have the same distribution of
observable covariates independently of treatment status;

• for given propensity score assignment to treatment is random and therefore
treated and control units are on average observationally identical.

Hence, any standard probability model can be used to estimate the propensity
score, e.g. a logit model:

Pr{Di = 1|Xi} =
eλh(Xi)

1 + eλh(Xi)
(116)

where h(Xi) is a function of covariates with linear and higher order terms.
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The choice of which higher order terms to include is determined solely by the
need to obtain an estimate of the propensity score that satisfies the balancing
property.

Inasmuch as the specification of h(Xi) which satisfies the balancing property
is more parsimonious than the full set of interactions needed to match cases
and controls on the basis of observables (as in equations 103 and 104), the
propensity score reduces the dimensionality of the estimation problem.

Note that, given this purpose, the estimation of the propensity scores does not
need a behavioral interpretation.

92



An algorithm for the estimation of the propensity score

i. Start with a parsimonious logit or probit function to estimate the score.

ii. Sort the data according to the estimated propensity score (from lowest to
highest).

iii. Stratify all observations in blocks such that in each block the estimated
propensity scores for the treated and the controls are not statistically differ-
ent:

(a) start with five blocks of equal score range {0− 0.2, ..., 0.8− 1};
(b) test whether the means of the scores for the treated and the controls are

statistically different in each block;

(c) if yes, increase the number of blocks and test again;

(d) if no, go to next step.
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iv. Test that the balancing property holds in all blocks for all covariates:

(a) for each covariate, test whether the means (and possibly higher order
moments) for the treated and for the controls are statistically different in
all blocks;

(b) if one covariate is not balanced in one block, split the block and test again
within each finer block;

(c) if one covariate is not balanced in all blocks, modify the logit estimation
of the propensity score adding more interaction and higher order terms
and then test again.

Note that in all this procedure the outcome has no role.

See the STATA program pscore.ado downloadable at
http://www.iue.it/Personal/Ichino/Welcome.html

With small variations, this is the algorithm proposed by Dehejia and Wahba
1999.
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Some useful diagnostic tools

Propensity score methods are based on the idea that the estimation of treatment
effects requires a careful matching of cases and controls.

If cases and controls are very different in terms of observables this matching is
not sufficiently close and reliable or it may even be impossible.

The comparison of the estimated propensity scores across treated and controls
provides a useful diagnostic tool to evaluate how similar are cases and controls,
and therefore how reliable is the estimation strategy.

More precisely, it is advisable to:

• count how many controls have a propensity score lower than the minimum
or higher than the maximum of the propensity scores of the treated.

– Ideally we would like that the range of variation of propensity scores is the
same in the two groups.
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• generate histograms of the estimated propensity scores for the treated and the
controls with bins corresponding to the strata constructed for the estimation
of propensity scores.

– Ideally we would like an equal frequency of treated and control in each
bin.

Note that these fundamental diagnostic indicators are not computed in standard
regression analysis.
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7.5 Estimation of the ATT by Stratification on the Propensity Score

This method is based on the same stratification procedure used for estimating
the propensity score. By construction, in each stratum covariates are balanced
and the assignment to treatment is random.

Let T be the set of treated units and C the set of control units, and Y Ti and

Y Cj be the observed outcomes of the treated and control units, respectively.

Letting q index the strata defined over intervals of the propensity score, within
each block we can compute

τSq =

∑
i∈I(q) Y

T
i

NT
q

−
∑
j∈I(q) Y

C
j

NC
q

(117)

where I(q) is the set of units in block q while NT
q and NC

q are the numbers of
treated and control units in block q.

The estimator of the ATT in equation 115 is computed with the following
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formula:

τS =

Q∑
q=1

τSq

∑
i∈I(q)Di∑
∀iDi

(118)

where the weight for each block is given by the corresponding fraction of treated
units and Q is the number of blocks.

Assuming independence of outcomes across units, the variance of τS is given
by

V ar(τS) =
1

NT

V ar(Y Ti ) +

Q∑
q=1

NT
q

NT

NT
q

NC
q
V ar(Y Cj )

 (119)

In the program atts.ado, standard errors are obtained analytically using the
above formula, or by bootstrapping using the bootstrap STATA option. See
http://www.iue.it/Personal/Ichino/Welcome.html
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7.6 Estimation of the ATT by Nearest Neighbor, Radius and Kernel Matching

Ideally, we would like to match each treated unit with a control unit having
exactly the same propensity score and viceversa.

This exact matching is, however, impossible in most applications.

The closest we can get to an exact matching is to match each treated unit with
the nearest control in terms of propensity score.

This raises however the issue of what to do with the units for which the nearest
match has already been used.

We describe here three methods aimed at solving this problem.

• Nearest neighbor matching with replacement;

• Radius matching with replacement;

• Kernel matching
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Nearest and radius matching with replacement for the ATT

The steps for the nearest neighbor matching method are as follows:

• For each treated unit find the nearest control unit.

• If the nearest control unit has already been used, use it again (replacement).

• Drop the unmatched controlled units.

• The algorithm delivers a set of NT pairs of treated and control units in which
control units may appear more than once.

The steps for the radius matching method are as follows:

• For each treated unit find all the control units whose score differs by less
than a given tolerance r chosen by the researcher.

• Allow for replacement of control units.

•When a treated unit has no control closer than r take the nearest control.

• The algorithm delivers a set of NT treated units and NC control units some
of which are used more than once.
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Formally, denote by C(i) the set of control units matched to the treated unit i
with an estimated value of the propensity score of pi.

Nearest neighbor matching sets

C(i) = min
j
‖ pi − pj ‖, (120)

which is a singleton set unless there are multiple nearest neighbors.

In radius matching,

C(i) =
{
pj | ‖ pi − pj ‖< r

}
, (121)

i.e. all the control units with estimated propensity scores falling within a radius
r from pi are matched to the treated unit i.

Denote the number of controls matched with observation i ∈ T by NC
i and

define the weights wij = 1
NC
i

if j ∈ C(i) and wij = 0 otherwise.
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The formula for both types of matching estimators can be written as follows
(where M stands for either nearest neighbor matching or radius matching):

τM =
1

NT

∑
i∈T

Y Ti − ∑
j∈C(i)

wijY
C
j

 (122)

=
1

NT

∑
i∈T

Y Ti −
∑
i∈T

∑
j∈C(i)

wijY
C
j

 (123)

=
1

NT

∑
i∈T

Y Ti −
1

NT

∑
j∈C

wjY
C
j (124)

where the weights wj are defined by wj = Σiwij. The number of units in the

treated group is denoted by NT .
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To derive the variances of these estimators the weights are assumed to be fixed
and the outcomes are assumed to be independent across units.

V ar(τM ) =
1

(NT )2

∑
i∈T

V ar(Y Ti ) +
∑
j∈C

(wj)
2V ar(Y Cj )

 (125)

=
1

(NT )2

NTV ar(Y Ti ) +
∑
j∈C

(wj)
2V ar(Y Cj )

 (126)

=
1

NT
V ar(Y Ti ) +

1

(NT )2

∑
j∈C

(wj)
2V ar(Y Cj ). (127)

Note that there is a penalty for over using controls.

In the STATA programs attnd.ado, attnw.ado, and attr.ado, standard errors are
obtained analytically using the above formula, or by bootstrapping using the
bootstrap option. See http://www.iue.it/Personal/Ichino/Welcome.html
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Estimation of the treatment effect by Kernel matching

Every treated unit is matched with a weighted average of all control units with
weights that are inversely proportional to the distance between the scores.

Formally the kernel matching estimator is given by

τK =
1

NT

∑
i∈T

Y Ti −
∑
j∈C Y

C
j G(

pj−pi
hn

)∑
k∈C G(

pk−pi
hn

)

 (128)

where G()̇ is a kernel function and hn is a bandwidth parameter. Under standard
conditions on the bandwidth and kernel∑

j∈C Y
C
j G(

pj−pi
hn

)∑
k∈C G(

pk−pi
hn

)
(129)

is a consistent estimator of the counterfactual outcome Y0i.

In the program attk.ado, standard errors are obtained by bootstrapping using
the bootstrap option. See http://www.iue.it/Personal/Ichino/Welcome.html
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7.7 Sensitivity of Matching Estimators to the CIA

Matching estimators crucially rely on the CIA to identify treatment effects.

Suppose that this condition is not satisfied given observables, but would be
satisfied if we could observe another variable.

This variable can be simulated in the data and used as an additional matching
factor in combination with the preferred matching estimator.

A comparison of the estimates obtained with and without matching on this
simulated binary variable tells us to what extent the baseline estimates are
robust to this specific source of failure of the CIA.

The simulated values of the binary variable can be constructed to capture dif-
ferent hypotheses on the nature of potential confounding factors.

See Ichino et al (2006b), Nannicini (2006) and http://nuke.tommasonannicini.eu
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7.8 Comments on matching methods.

Matching methods should not be applied just because there is no alternative
experimental or quasi-experimental solution for the estimation of treatment ef-
fects.

They should applied only when the assumption of selection on observables is
plausible.

In any case, their sensitivity to the validity of the CIA should be assessed before
drawing conclusions.

One of their most desirable feature is that they force the researcher to design
the evaluation framework and check the data before looking at the outcomes.

They dominate other identification strategies that require selection on observ-
ables, like OLS, because they involve a more convincing comparison between
treated and control subjects.
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