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Appendix to Section 2: The Epi-nomics Model

In this appendix we characterize the basic epidemiological concepts on which the Epi-nomics

model presented in the paper is constructed. We start with the basic SEIR model.

SEIR Model

The basic SEIR model (Allen, 2017) for the transmission dynamics of the virus (Figure

B–1) for the transmission dynamics of the virus classifies individuals as: Susceptible, then

Exposed, then Infectious, then Removed. Infectious are divided in three groups: Mild (no

hospitalization is needed), Severe(hospitalization needed with a lag Tshosp), and Fatal (this

condition has to be interpreted as a pre-assigned final outcome for that condition, after

hospitalization, with a lag Tshosp ). At the end of the process some subjects are removed as

Recovered (REC) and the others are removed as fatalities (REM FAT ).

Figure B–1: Flowchart of the SEIR model

Note: Description of the possible dynamic transitions of a subject in the basic SEIR model (Allen, 2017)

Time is measured in days and is denoted by t. An initial total population ofN0 individuals

is divided into the first infectious subject (I0 = 1) and S0 = N0−1 susceptible subjects. The

virus spreads via the interaction between Susceptible and Infectious individuals ( visually

illustrated in the graphical representation of the model by the black arrow)

In each subsequent day t some susceptibles become exposed. The daily quantity of new

exposed that become new infectious after an incubation period is determined by the net

reproduction number of the infection multiplied by the number of existing infectious. The

net reproduction number is time varying and it depends on three components: the basic

reproduction number (BRN) of the infection, R0 (i.e. the number of secondary infections

each infectious individual produces at the initial stage of the infection in absence of policies

or behavioural responses ), the average number of days in which a subject is infectious, Tinf ,

and the fraction of susceptibles to the total population, St−1

Nt−1
, so in each period we have:
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NewEt =
Rt

Tinf

It−1 ; Rt = R0
St−1

Nt−1

The exposed, after an incubation period of Tinc days, become infectious. Therefore the

outflow from the susceptibles is the inflow into the exposed in each period and, similarly, the

outflow from the exposed is the inflow into the infectious, who fall into two categories: those

whose destiny is recovery and those whose destiny is to become a fatality. The allocation

to these two groups is controlled, respectively by the two probabilities: 1 − pfat and pfat.

Those who survive the infection are then removed as recovered, REM RECt, after a period

of Tsrec days from symptoms to recovery. Those who become instead fatalities are removed

as fatalities, REM FATt, after a period of Tsd days from symptoms to death.

Some comments are necessary to understand the extensions of this basic model that will

be presented later. First, a feature of the model is that the lethality of the virus, as measured

by

λseirt =
REM FATt

Et + It +REM RECt +REM FATt
,

always converges eventually to the Case Fatality Rate which is the exogenously fixed prob-

ability with which an Exposed individual eventually dies. If R0 ≤ 1 the virus diffusion is

inhibited and the share of the total population that dies goes to zero as λseirt goes to the

CFR. If instead R0 > 1, the share of the total population that dies converges to the CFR

as λseirt converges to pfat, and all individuals become eventually Exposed. In this second

case, the total number of victims will be the same independently of the size of R0, which

determines only the speed at which the asymptotic number of victims is reached.

The full model dynamics is described as follows:
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∆St =

(
− R0

Tinf

It−1
Nt−1

)
St−1

∆Et =

(
R0

Tinf

It−1
Nt−1

)
St−1 −

(
1

Tinc

)
Et−1

∆It =

(
1

Tinc

)
Et−1 −

(
1

Tinf

)
It−1

∆RECt =
(
1− pfat

)( 1

Tinf

)
It−1 −

(
1

Trec

)
RECt−1

∆FATt = pfat
(

1

Tinf

)
It−1 −

(
1

Tsd − Tshosp

)
FATt−1

∆REM FATt =

(
1

Tsd − Tshosp

)
FATt−1

∆REM RECt =

(
1

Trec

)
RECt−1

Nt = Nt−1 −∆REM FATt

From the basic SEIR to the Epi-nomics model

As discussed in the main text our Epi-nomics model extends the basic SEIR model along

several dimensions:

1. Multi-risk and multi-activity Populations is divided into 9 age-brackets (from 0-9 to

80+) of which 5 are in working age (20-69 yers old). The working cohorts are allocated

to two-production sectors, characterized by different levels of coworkers proximity, or

inactivity imposed by a containment policy. We have therefore 19 groups with different

probabilities of infection, hospitalization and fatality that vary with age, sector and

age-specific labor force participation.

2. Intervention Policies and Behavioural Responses In our model to basic repro-

duction number of homogenous agents model will be substituted by a basic reproduc-

tion matrix,R(a, b;α), that describes the number of agents of type (a) that are infected

by an agent of type (b) for a level of activity α, (for example, a worker in the high-risk

sector does not infect many people if he is not active). The virus dynamics will be

affected not only by the containment policy adopted by the government and reflected

in the choices of Activity Levels but also by the behavioural response of individuals to

the development of the virus.

3. Time-Varying death probability The probability of death is time-varying and it

can become higher than the constant CFR ( Case Fatality Rate) of COVID-19. The
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Probability of death is modelled to increase progressively with the saturation of hos-

pitals and to reach a critical point when the available supply of intensive care beds is

fully saturated.

4. Management of Hospital Flows With our specification of the probability of death

management of the hospital flows becomes an important policy to reduce mortality.

Extensive testing, early detection of the infectious, their placement in domestic quar-

antine paired with administering medicines can prevent them to reach the stage of

symptoms that need hospitalization.

5. Economic Structure. Finally, we complement the epidemiological framework with

a simple economic structure to model production in the two regions.

Model Overview

We describe the model dynamics reporting only the main equations. The full specification

of the model along is reported and illustrated in details in the Online Appendix. We adopt

a compartmental model for the daily dynamics of the population. The population is divided

into 19 groups with different age, sector and age-specific labor force participation, and thus

with different probabilities of infection, hospitalization and fatality. The are 9 age-brackets.

Population in working age (belonging to the five brackets between 20 and 69 years of age)

is split into three separate groups. The first two groups include individuals who work re-

spectively in the low-risk or in the high-risk sectors; the third group includes individuals in

working age that are not part of the labor force, either voluntarily or because of containment

policies. Thus we have 15 different groups of working age population.

In addition there are two age groups of inactive under 20 and 2 age groups of inactive

over 69. Denoting these groups with generic terms a, b ∈ {1, . . . , 19}, the model for the

transmission dynamics of the virus classifies individuals in ten compartments as Suscepti-

ble St(a), Exposed Et(a), Infectious It(a), Mildly symptomatic MILDt(a), Severely symp-

tomatic SEVt(a), Hospitalized with mild symptoms, HOSPMILDt(a), Hospitalized with

severe symptoms HOSPt(a), Hospitalized needing Intensive Care HOSPICU t(a), Fatalities

FATt(a) and Recovered RECt(a).

Model Dynamics

The epidemiological dynamics is described by 228 equations (19 groups and 12 compart-

ments). The compartmental structure of a simplified (only two groups) version is illustrated

in Figure B–2.
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Susceptible individuals become Exposed through contacts with Infectious. They stay

exposed, without symptoms and being not infectious, for an incubation period Tinc. Once

incubation has elapsed, Exposed become Infectious and suffer symptoms, that can be mild or

severe. Severe patients (SEV) never revert to a state of MILD. MILD patients do not show

symptoms initially, but without proper medical care may turn into Severe. This process

occurs after Tinf days.

Within this framework, we introduce testing, which leads to domestic quarantine of the

infectious with mild symptoms. Domestic quarantine has two effects. First, it reduces the

spread of the virus by reducing the number of contacts in which some infectious agents are

allowed to interact with susceptible agents. Second, paired with pharmacological treatment,

it can prevent patients from reaching a stage requiring hospitalization.

The mild infected either recover or their condition becomes severe and they require

hospitalization. The probability of becoming severe is higher for the undetected than for

the detected. With testing and early detection, patients are cared at home and hospitals

congestion is reduced. All severe patients become hospitalized. Severe hospitalized either

recover or they worsen and require intensive care (IC). Patients needing IC may die or

recover. When IC is available and there is no hospital congestion mortality is determined

by the CFR. However, mortality in IC increases with hospital congestion. When IC units

are fully saturated, mortality explodes as all patients in need of IC and who cannot receive

it succumb. At the end of each day the population decreases because of fatalities, while

the stock of recovered grows by the amount of those who survive. The cycle starts again

in the next day. We close the model by summarizing the economic effects via a production

function.1

The Dynamics of Susceptible and Exposed individuals

We denote by Rt(a, b;α) the element (a, b) of the reproduction matrix at day t corresponding

to the total number of Susceptible in group a that an infectious agent in group b contaminates,

under policy α to be defined below. So, Rt(a,b;α)
TInf

is the number of daily infections. The core

equations describing the dynamics of the virus for Susceptible and Exposed individuals are,

for each a of our 19 groups of agents:

1We are fully aware that a complete characterization of the economic costs of the Covid–19 pandemic
would require a more sophisticated and detailed dynamic macroeconomic model, which we leave for future
extensions of this project.
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Figure B–2: Flowchart of the Multi-Groups Epi Model
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∆St(a) = − 1

TInf

∑
b∈A

It−1(b)Rt(a, b;α)

∆Et(a) = −∆St(a)− 1

TInc
Et−1(a).

Note that the Infectious do not initially feel symptoms as Tinc is the average number of days

of incubation before becoming symptomatic.

Rt(a, b;α) is best understood by tracking its evolution over time. At time 0, in the initial

period of the pandemic, we have:

R0(a, b;α) =
N0(a)

N0

R(a, b;α) =
N0(a)

N0

β(m0)M(a, b;α) (B–1)

At this initial stage, the entire population, N0, is susceptible, so that S0(a) = N0(a). More-

over, the probability of interacting with other agents, which is initially equal to one for every

group, is not reduced by lockdown policies or by behavioural responses to the virus and all

workers are active. Finally, only the non-employed do not go to work and do not interact

with other workers. The number of susceptible agents of type a that are infected by an agent

of type b depends on the number of meetings between the agents, M(a, b;α), and on the

probability of contagion given that a meeting takes place, β(m0).

In subsequent periods, as the virus spreads across the population, the number of suscep-

tible decreases, the probability of contagion is affected by policies such as wearing masks or
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social distancing, the probability of interaction among agents becomes smaller than one as

a consequence of legally imposed or voluntary chosen reduction in mobility, and the number

of active workers can be reduced by NPIs.

The number of Susceptible individuals that each infectious infect, depends on the prob-

ability of infection, denoted as β(mt−1),2 on the probabilities with which susceptible and

infectious agents interact and on the activation policy for the working population, described

by α. Quadratic matching implies that the probability of two people interacting is in turn

given by the product of the two probabilities with which each one of them enters into an

activity. This event occurs if their utility Vt is higher than an optimally chosen threshold v∗t

, denoted by Pr(Vt ≥ v∗t |a). This probability reflect both the average response of agents to

policies and their behavioural response to the spreading of the virus. Therefore, Rt(a, b;α)

will evolve according to:

Rt(a, b;α) =
St−1(a)

Nt−1

β(mt−1)

β(m0)
Pr(Vt ≥ v∗t |a)Pr(Vt ≥ v∗t |b)R(a, b;α) (B–2)

Modelling Rt(a, b;α)

In our model the population is divided into 9 age-brackets. Each age bracket between 20 and

69 years of age is split into three separate groups. The first two groups include individuals

who work respectively in the low-risk or in the high-risk sectors; the third and last group

include individuals in working age that are not part of the labor force. Thus we have: 5 age

groups of active in the low-risk sector, 5 age groups of active in the high-risk sector, and 5

age groups of inactive. In addition to these 15 groups there are two age groups of inactive

under 20 and 2 age groups of inactive over 69. The resulting 19 groups constitute the set

{1, 2, . . . , 19}, with generic term a, b, that we have already introduced. Workers correspond

to the elements {3, . . . , 12} with {3, . . . , 7} in the low-risk sector and {8, . . . , 12} in the high-

risk sector. The set {13, . . . , 17} indicates the inactive groups in the five active age brackets.

The number of age groups of workers is L = 5, and so 3L = 15 is the number of classes of

workers as distinct by age, risk sector and activation.

In this framework the basic reproduction number of single-agent standard epidemiological

models will be replaced by a matrix, with entries that differ among the 19 groups. For

workers, this number may depend on the level of activity. For example, a worker in the

high-risk sector does not infect many people if he is not active. To model the effects of

policies that restrict the access to work of particular categories of workers we specify how

each entry in the basic reproduction matrix depends on the level of activity.

2This probability may evolve over time with the spreading of the virus, as it is affected by imposed
precaution, such as wearing masks, and by mutations of the virus aggressiveness.
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We will first focus on the sub-matrix defining the reproduction rates within the workforce,

that is the sub-matrix that describes how many infected workers of class b are induced by

workers of type a; here a and b are generic elements of the set of workers. We denote the level

of activity as α : {3, . . . , 17} → [0, 1] , with α(a) indicating the level of activity of group a:

for example, α(9) = 0.5 indicates that half of the individuals of age 30 to 39 in the high-risk

sector are active. We denote αmin the minimum level of activity of each active class, and

with 1, a vector of 1’s, the vector of activity corresponding to normal conditions. Iso is a

fixed number (independent of the group); intuitively, this describes the number of infected

when a person is isolated. Thus we define the Basic Reproduction Matrix (BRM) at level

α of activity, for every a and b in the set of workers:

R(a, b;α) = R(a, b; 1)α(a)α(b) + Iso(1− α(a)α(b)) (B–3)

To simplify the description of the BRM , we denote r(a) the (high, low or inactive) risk

sector of class a; for instance r(3) = Low, r(10) = High; and we introduce two numbers,

Risk(r) for r ∈ Low,High to indicate the level of risk (in number of infected). We assume:

1. R(a, b; 1) = Risk(r(a)) if r(a) = r(b);

2. R(a, b; 1) = Tr if r(a) 6= r(b).

The first condition requires that the BRM of a on b when both are active and in the

same sector only depends on the sector (and not on the age of a and b): so Risk(L) for

the low-risk sector and Risk(H) for the high-risk sector. The second condition requires the

value to be the same for any two active workers who are working in different sectors. Tr is

suggestive of the means of transportation that they share when going to work even if the do

not affect each other during work.

The value of α for the inactive is constrained to reflect the inactivity condition:

for all a ∈ {13, . . . , 17}, α(a) = 0. (B–4)

In view of the constraint (B–4), in the description of the calibration of parameters and

policies we focus on the 2L levels of activity of the workforce. The reduction in activation

of agents during lockdown is modeled by choosing an appropriate level of minimum activity,

which reflects institutional constraints.

We then assume that the values of the reproduction matrix for the inactive workers is

equal to a common value:

Risk(In) = Iso (B–5)

The description of the BRM is completed by considering the four non-working groups. For
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the first two age groups and the last two age groups we have, for all b, R(1, b; 1) = R(2, b; 1) =

R(18, b; 1) = R(19, b; 1) = Iso, with two exceptions: before the lockdown and after Phase II

we set R(1, 1; 1) = R(2, 2; 1) = Risk(High). The parameters we have introduce are collected

into a vector ρ ≡ (Risk(L), Risk(H), Risk(In), T r, Iso).

Modelling probabilities of activity

In this section we see how the interaction of policy and behavioural responses to the virus

dynamic affects the probability, Pr(Vt ≥ v∗t ), with which an agent enters into a generic

activity. We choose the time unit, denoted ∆t, to be “short enough” so that a person only

meets another person within that time unit. When we re-scale the process and set the time

unit to one day, then the number of matches in that longer time unit will be:

M =
1

∆t
. (B–6)

For simplicity, we now consider a single period model and omit time subscripts in this

section. Each individual’s value of the activity, indicated by V , is distributed according to a

continuous cumulative distribution function F , the same for all consumers. We assume that

(i) whether the activity occurs or not does not affect the agent’s utility in the next period;

(ii) the distribution F over the value drawn is independent of the health condition of the

agent (i.e. on whether he/she is S, E, I or REM).

People are randomly matched. We are interested in the matches in which one of the

two individuals is I and the other is S. The meeting of an I and an S person result in

the S-type being infected with probability β(m), which is influenced by biological factors,

and preventive measures (m) imposed on the agents (m is mnemonic for masks). In our

specification agents do not take any decision that affects β(m), in line with the evidence on

COVID–19 rules compliance in northern Italy.3

The number of individuals an active person meets is determined by the maximization of

her utility derived from the activity. She may choose to be inactive, thus getting a given

fixed utility value, which we normalize to zero. Or she may choose to be active (for example,

to go out of the house in pursuit of some activity), getting the (random) value V , minus the

expected cost of the potential infection. The solution of this simple maximization problem

is described by a threshold in value space: those with a draw of V higher than a threshold

v∗, to be determined endogenously, decide to be active.

This behavioral response depends on the behavior of others as well as on the policy being

implemented. We examine later – see equations (B–11) and (B–12) – how different policies

3See, for example, Durante et al. (2020).
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affect the response. Let C be the cost of being infected for a subject. The threshold v∗

solves:4

v∗ =
I

N
β(m)Pr(V ≥ v∗)C. (B–7)

We consider the case in which F is a uniform distribution on [0, V ], so F (x) = x
V

, for

x ∈ [0, V ]. If we denote the probability of being infected as

p ≡ I

N
β(m) (B–8)

then

v∗ =
pC

V + pC
V (B–9)

so that substituting the value of v∗ gives:

Pr(V ≥ v∗) =
V

V + pC
(B–10)

Similar arguments extend to the period after administrative measures (enforced by fines

or other penalties) are taken to limit movements (as in lockdown). If we call K the expected

non-negative cost of measures to control the spread of the virus, then we have:

v∗ = V min

{
pC +K

pC + V
, 1

}
(B–11)

and therefore:

P (V ≥ v∗) = max

{
V −K
pC + V

, 0

}
. (B–12)

From Infectious to Mild and Severe

Infectious do not initially feel symptoms, but unlike the period in which they were just

exposed, they spread the virus for a period that lasts Tinf days. After this period they

suffer symptoms, that can be mild or severe. Severe patients (SEV) never revert to a state

of MILD. MILD patients without proper medical care may turn into Severe. This process

occurs after Tinf days, in which both infected and infectious have very mild symptoms,

and thus do not avoid contacts. Within this framework, we introduce testing, which leads to

domestic quarantine of the infectious with mild symptoms. Domestic quarantine, paired with

4Note that this equation omits a measure of population density acting as a determinant of the number
I of infectious, because of our choice of the time scale. Garibaldi et al. (2020) note the similarity of this
assumption with the one behind the “matching function” of labor models.
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pharmacological treatment, can stop them from reaching a stage requiring hospitalization.

The dynamics of the Infectious in daily data is as follows:

∆It(a) =

(
1

Tinc

)
Et−1(a)− (1− δ)

(
1

Tinf

)
It−1(a)− δ

(
1

Tinf0

)
It−1(a)

∆MILDU
t (a) = pmild(a) (1− δ)

(
1

Tinf

)
It−1(a)−

(
1

Tsrec,U

)
MILDU

t−1(a)

−pM2Sev,U (a)

(
1

Tshosp,U

)
MILDU

t−1(a)

∆MILDD
t (a) = pmild(a)δ

(
1

Tinf0

)
It−1(a)−

(
1

Tsrec,D

)
MILDD

t−1(a)

−pM2Sev,D(a)

(
1

Tshosp,D

)
MILDD

t−1(a)

∆SEVt(a) =
(

1− pmild(a)
)(

(1− δ)
(

1

Tinf

)
+ δ

(
1

Tinf0

))
It−1(a)−

(
1

Tshosp

)
SEVt−1(a)

Exposed enter the compartment of the infectious as those with mild symptoms, MILDt(a),

and those with severe symptoms, SEVt(a). The allocation to these groups is controlled by

two probabilities: pmild(a) and
(
1− pmild(a)

)
. Testing allows to detect a share δ of those

destined to become MILD; they thus become detected, MILDD
t (a) while (1− δ) become

undetected, MILDU
t (a). Detection and associated medical care reduces the length of the

period in which agents are infectious from Tinf to Tinf0 < Tinf . The same applies to the in-

fectious who are destined to become Severe. As a consequence of the severity of symptoms,

there are no Severe undetected after Tinf days in which they are virtually asymptomatic.

Hospitalization, ICU needs and endogenous mortality

The mild infected either recover – after periods of duration respectively of Tsrec,U and (Tsrec,D)

days – or their condition becomes severe and they require hospitalization, after a period

of duration Tshosp,U (Tshosp,D) days. The probability of becoming severe is higher for the

undetected than for the detected: pM2Sev,U(a) > pM2Sev,D(a). With testing and early detec-

tion, patients are cared at home and hospitals congestion is reduced. MILD patients who

become severe and are hospitalized recover after a period of (Tshd,U − Tshosp,U) days. All

severe patients become hospitalized after Tshosp days. Severe hospitalized either recover after

(Tshd,U − Tshosp,U) days with probability pic(a) or they worsen with probability (1− pic(a))

and require intensive care after Thosp−ic days. Patients needing ICU may die or recover.

When ICU is available and there is no hospital congestion mortality is determined by the

CFR, pfat(a). However, mortality in ICU increases with hospital congestion. This increase

is modelled by a logistic function of total hospitalization. The parameter k in the logistic

is calibrated in such a way that the endogenous mortality probability is zero under normal
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conditions and it increases with hospital saturation. When ICU is fully saturated, mortality

explodes as all patients in need of ICU who do not find availability succumb. Those patients

in ICU who recover, leave ICU after (Tshd − Thosp−ic). Those who do not recover die after

(Tsd − Tshosp−ic). Those who need ICU and do not find it available, die immediately. The

dynamics of hospitalization is determined as follows:

∆HOSP MILDt(a) = pM2Sev,D(a)

(
1

Tshosp,D

)
MILDD

t−1(a) + pM2Sev,U (a)

(
1

Tshosp,U

)
MILDU

t−1(a)

−
(

1

Tshd − Tshosp,U

)
HOSP MILDt−1(a)

∆HOSPt(a) =

(
1

Tshosp

)
SEVt−1(a)− pic(a)

(
1

Thosp−ic

)
HOSPt−1(a)

−(1− pic(a))

(
1

Tshd − Tshosp

)
HOSPt−1(a)

pdeath(a) =
(
pfat−ic(a)

)
+
(

1− pfat−ic(a)
)( 1

1 + e−k0(HOSP MILDt+HOSPt−k1)

)
NEW DEM ICt(a) = pic(a)

(
1

Thosp−ic

)
HOSPt−1(a)

pav = min

{
1,
ICCt −

∑
aHOSP ICt−1(a)∑

aNEW DEM ICt(a)

}
∆HOSP ICt(a) = pavNEW DEM ICt(a)− pdeath(a)

(
1

Tsd − Thosp−ic − Tshosp

)
HOSP ICt−1(a)

−(1− pdeath(a))

(
1

Tshd − Thosp−ic − Tshosp

)
HOSP ICt−1(a)

∆HOSP POST ICt(a) = (1− pdeath(a))

(
1

Tshd − Thosp−ic − Tshosp

)
HOSP ICt−1(a)

−
(

1

Tic−rec

)
HOSP POST ICt−1(a)

Recoveries and Fatalities

At the end of each day the population decreases because of fatalities, while the stock of

recovered grows by the amount of those who survive having had mild or severe symptoms,

with or without the need of IC.

∆FATt(a) = (1− pavailable)NEW DEM ICt(a) + pdeath(a)

(
1

Tsd − Thosp−ic − Tshosp

)
HOSP ICt−1(a)

∆RECt(a) =

(
1

Tic−rec

)
HOSP POST ICt−1(a) + (1− pic(a))

(
1

Tshd − Tshosp − Tshosp

)
HOSPt−1(a)

+

(
1

Tsrec,U

)
MILDU

t−1(a) +

(
1

Tsrec,D

)
MILDD

t−1(a) +

(
1

Tshd − Tshosp,U

)
HOSP MILDt−1(a)

∆Nt = −
∑
a∈A

∆FATt(a)
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Appendix to Section 4: Estimation and Calibration

Appendix to Section 4.1: Parameters determining the probabil-
ity of activity

This result of our non-linear estimation of behavioural responses reported in Table 2 is

graphically illustrated by B–3 which is based on the estimates for the average mobility

measure. The figure displays the scatter plot of daily fatalities and average mobility. The

different markers of the scatter plot identify the three periods for which we have data: Pre-

lockdown, Lockdown and Phase 2. The figure also plots predictions from locally weighted

regressions as well as predictions based on the estimates in column 2 of Table 2.

Figure B–3: Behavioural responses to news and policies
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Note: the figure displays the scatter plot of daily fatalities and the average of the Google mobility measures for workplace,
transportation and grocery. For each type of mobility, the measure is the change of the number of moves on a given day relative
to the same day-of-the-week in the reference period defined as January, 6 – February, 3, 2020. The different markers of the
scatter plot identify the three periods for which we have data: Pre-lockdown, Lockdown and Phase2. The figure also plots
predictions from locally weighted regressions obtained with the “lowess” Stata command (dashed lines; bandwith=0.8) as well
as the predicted values of obtained with the non-linear least square estimates for working days reported in column 4 of Table
?? (dashed-dotted lines).

Within each of the three phases we cannot reject that the relationship between mobility

and daily fatalities is negative and convex as predicted by the model. This negative and

convex relationship within each phase is the behavioural response of subjects to the variation
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of the contagion risk, in the absence of policies.5

The parallel downward shift between the circles and the squares is the effect of the

Lockdown, which has reduced mobility for any level of fatalities. The upward shift from the

squares to the triangles is instead the effect of the softening of restrictions during the Phase

2 with respect to the Lockdown. While it is evident that policies were effective, this Figure

clearly shows that the hypothesis of an endogenous response to the number of infectious

cannot be dismissed and it is quantitatively important. Of course, the short time horizon on

which these estimates are computed does not guarantee that in the long run this behavioural

effect would maintain the same intensity, as individuals may become used to the presence of

Covid-19 and less responsive to news related to the effects of the disease.

5Cochrane (2020) for example states that, as a consequence of the omission of this response, “the SIR
model has been completely and totally wrong”. Durante et al. (2020) also find that after the virus outbreak
mobility declined in Italy, but significantly more in areas with higher civic capital, both before and after
a mandatory national lockdown. Civic capital is however likely to be irrelevant for our analysis since all
available measures suggest the absence of significant differences in this variable between Lombardia and
Veneto.
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Appendix to Section 5: Model Fit

Figure B–4: Simulated and observed daily hospitalization with parameters from Ferguson
et al. (2020)

Note: the figure reports, respectively for the two regions, the simulated and observed numbers of daily hospitalized due to
Covid-19.The vertical bars indicate the start of the lockdown (March 8), the start of the phase 2 (May 4) and the start of
the new school year (September 14). Source: The simulated values are from the Epi-nomics model. The observed series were
downloaded from https://github.com/pcm-dpc/COVID-19.
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Appendix to Section 6: Policy Simulations

The BRM under alternative policies

Figure B–5: Equivalent Basic Reproduction Matrices post-Lockdown for Policy LOCK

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.

Figure B–6: Equivalent Basic Reproduction Matrices post-Lockdown for Policy SEC

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.

Figure B–7: Equivalent Basic Reproduction Matrices post-Lockdown for Policy AGE

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.
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Figure B–8: Equivalent Basic Reproduction Matrices post-Lockdown for Policy AGE-SEC

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.

Figure B–9: Equivalent Basic Reproduction Matrices post-Lockdown for Policy ALL

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.
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Table B–1: Worker activation vector of the efficient policies in Lombardia and Veneto with
behavioural response and β(m) = 0.9

Low-Risk sector High-Risk sector
Age brackets Age brackets

Policy 20-29 30-39 40-49 50-59 60-65 20-29 30-39 40-49 50-59 60-65

Efficient AGE SEC policies common to both regions

p = ALL 1 1 1 1 1 1 1 1 1 1

p = AGE SEC1 1 1 1 1 1 1 1 1 1 0.6

p = AGE SEC2 1 1 1 1 1 0.6 1 1 1 0.6

p = AGE SEC3 1 1 1 1 1 1 1 1 0.6 0.6

p = AGE SEC4 1 1 1 1 1 0.6 1 1 0.6 0.6

p = AGE SEC5 1 1 1 1 0.6 0.6 1 1 0.6 0.6

p = AGE SEC6 1 1 1 1 0.6 1 0.6 1 0.6 0.6

p = AGE SEC7 1 1 1 1 0.6 1 1 0.6 0.6 0.6

p = SEC SEC8 1 1 1 1 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC9 0.6 1 1 1 0.6 1 1 0.6 0.6 0.6

p = AGE SEC10 0.6 1 1 1 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC11 1 1 1 0.6 1 1 1 0.6 0.6 0.6

p = AGE SEC12 1 1 1 0.6 0.6 1 1 0.6 0.6 0.6

p = AGE SEC13 1 1 1 0.6 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC 1 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC14 1 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC15 0.6 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC16 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC17 1 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC18 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC19 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC20 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = LOCK 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Efficient AGE SEC policies for Veneto only

p = AGE SEC22 1 1 1 1 1 1 0.6 1 1 0.6

p = AGE SEC23 1 1 1 1 1 1 1 1 0.6 1

p = AGE SEC24 1 1 1 1 1 1 0.6 1 0.6 0.6

Other representative policies close to the efficient contour

p = AGE 1 1 1 0.6 0.6 1 1 1 0.6 0.6

p = SEC 1 1 1 1 1 0.6 0.6 0.6 0.6 0.6

Note: This table reports the labor force activation vector for all the efficient and representative policies.
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Table B–2: Lombardia and Veneto: main outcomes with behavioural response and β(m) =
0.7

Policies

LOCK SEC AGE SEC AGE ALL

Lombardia

Total fatalities 15198 21422 21894 19400 26393

GDP loss 0.26 0.104 0.094 0.148 0

Final immunity share 0.050 0.059 0.061 0.057 0.068

Veneto

Total fatalities 5557 8681 8891 7339 12311

GDP loss 0.26 0.104 0.097 0.150 0

Final immunity share 0.023 0.035 0.036 0.031 0.045

Note: The table reports the main outcomes of the five policies in Lombardia and Veneto, for the scenario with behavioural
response and β(m) = 0.7, measured over the year between November 1, 2020 and October 31, 2021. Final immunity share
is calculated at the end of the simulation period taking into account the total exposed from January 1, 2020 and excluding
reinfection. The numbers in parentheses indicate the minimum and maximum Average Rt during the simulation period (they
do not define a confidence interval).

Figure B–10: The trade off between herd immunity and fatalities

Note: This figure describes the trade off betweeen fatalities and herd immunity which is defined as the ratio between total
recoveries and population in the last period of the simulation. Source: our simulations of the Epi-nomics model.
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Appendix C
Evidence based on Covid-19 parameters from CDC (Garg, 2020)
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This section evaluate the robustness of results using Covid-19 parameters estimated for

the U.S. by the Center of Deseases Control (CDC (Garg, 2020)) . The next two tables report

this different set of parameters.

Table C–3: Health effects of Covid-19 by age bracket (Garg (2020))

Age brackets

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+

psev 0.001 0.003 0.012 0.032 0.049 0.102 0.166 0.243 0.273

pic 0.05 0.05 0.05 0.05 0.063 0.122 0.274 0.432 0.709

pfat 0.00002 0.00006 0.0003 0.0008 0.0015 0.006 0.022 0.051 0.093

Note: the table reports for each age bracket the probability of hospitalization, psev , the probability of needing intensive care if
hospitalized, pic and the probability of death pfat for a subject exposed to Covid-19 infection. Source: Garg (2020).

Table C–4: Calibrated parameters

Lombardia Veneto

k0 k1 δ1:68 δ68:609 k0 k1 δ1:609 γ

0.0008 2000 0.3 0.7 0.0008 800 0.7 0.1

Note: k1 and k2 are the parameters of the logistic function that affects the endogenous mortality(
1

1+e−k0(HOSP MILDt+HOSPt−k1)

)
. δt and γ are consistent with the higher hospitalization rate implied by parame-

ters from Garg (2020).
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Appendix to Section 5: Model Fit

Figure C–11: Simulated and observed total fatalities with parameters from Garg (2020).

Note: The figure reports, respectively for the two regions, the simulated and observed numbers of daily hospitalized due to
Covid-19.The vertical bars indicate the start of the lockdown (March 8), the start of the phase 2 (May 4) and the start of
the new school year (September 14). Source: The simulated values are from the Epi-nomics model. The observed series were
downloaded from https://github.com/pcm-dpc/COVID-19.

Figure C–12: Simulated and observed daily fatalities with parameters from Garg (2020).

Note: The figure reports, respectively for the two regions, the simulated and observed numbers of daily fatalities due to Covid-
19. The vertical bars indicate the start of the lockdown (March 8), the start of the phase 2 (May 4) and the start of the new
school year (September 14). Source: The simulated values are from the Epi-nomics model. The observed series were downloaded
from https://github.com/pcm-dpc/COVID-19.
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Figure C–13: Simulated and observed daily hospitalization with parameters from Garg
(2020).

Note: the figure reports, respectively for the two regions, the simulated and observed numbers of daily hospitalized due to
Covid-19. The vertical bars indicate the start of the lockdown (March 8), the start of the phase 2 (May 4) and the start of
the new school year (September 14). Source: The simulated values are from the Epi-nomics model. The observed series were
downloaded from https://github.com/pcm-dpc/COVID-19.

Figure C–14: The IC availability constraint in Lombardia and Veneto with parameters from
Garg (2020).

Note: The figure reports, respectively for the two regions, the simulated demand for IC beds due to Covid-19, the observed
number Covid-19 patients in IC and the observed number of patients that were effectively hospitalized in IC. The vertical
bars indicate the start of the lockdown (March 8), the start of the phase 2 (May 4) and the start of the new school year
(September 14). Source: the demand for IC is simulated by our Epi-nomics model. The observed series were downloaded from
https://github.com/pcm-dpc/COVID-19 for the used IC and from https://www.dropbox.com/s/skabm9ct71qud32/ICU%20beds%

20statistics.xlsx?dl=0 for the supply of IC.

27

 https://github.com/pcm-dpc/COVID-19
 https://github.com/pcm-dpc/COVID-19
https://www.dropbox.com/s/skabm9ct71qud32/ICU%20beds%20statistics.xlsx?dl=0
https://www.dropbox.com/s/skabm9ct71qud32/ICU%20beds%20statistics.xlsx?dl=0


Appendix to Section 6: Policy Simulations

Appendix to Section 7.1: The BRM under alternative policies

Figure C–15: Equivalent Basic Reproduction Matrices post-Lockdown for Policy LOCK with
parameters from Garg (2020).

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.

Figure C–16: Equivalent Basic Reproduction Matrices post-Lockdown for Policy SEC with
parameters from Garg (2020).

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.
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Figure C–17: Equivalent Basic Reproduction Matrices post-Lockdown for Policy AGE with
parameters from Garg (2020).

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.

Figure C–18: Equivalent Basic Reproduction Matrices post-Lockdown for Policy AGE-SEC
with parameters from Garg (2020).

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.

Figure C–19: Equivalent Basic Reproduction Matrices post-Lockdown for Policy ALL with
parameters from Garg (2020).

Note: Each cell in the table reports the R0, eq with β(m) = 0.9 for the interaction between an infectious subject of the category
of the corresponding row and exposed subjects in the category of the corresponding column.
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Efficient frontiers and Virus dynamics

Figure C–20: The efficient frontier in the two regions with β(m) = 0.7

Note: In each panel, the two curves report the efficient frontiers for outcomes occurring between November 1, 2020, and October
31, 2021. Each point shows the GDP loss and the number of fatalities per million individuals associated to the policies that are
efficient (as defined in the text). The representative policies are displayed in the same way. GDP losses are defined as relative
to the GDP implied by the policy ALL.

Figure C–21: The efficient frontier in the two regions with β(m) = 0.9

Note: In each panel, the two curves report the efficient frontiers for outcomes occurring between November 1, 2020, and October
31, 2021. Each point shows the GDP loss and the number of fatalities per million individuals associated to the policies that are
efficient (as defined in the text). The representative policies are displayed in the same way. GDP losses are defined as relative
to the GDP implied by the policy ALL.
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Figure C–22: Daily fatalities under the different policies in Lombardia with parameters from
Garg (2020).

Note: The figure reports, for Lombardia, the daily fatalities due to Covid-19 under the 5 representative policies that we consider,
for the scenario with behavioural response and β(m) = 0.7. The left panel covers the entire period from January 1, 2020 to
October 31, 2021. The right panel zooms into the year of simulation starting on November 1 in order to better highlight the
differences between the fatalities associated to each policy.
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Figure C–23: Daily fatalities under the different policies in Veneto with parameters from
Garg (2020).

The figure reports, for Veneto, the daily fatalities due to Covid-19 under the 5 representative policies that we consider, for the
scenario with behavioural response and β(m) = 0.7. The left panel covers the entire period from January 1, 2020 to October
31, 2021. The right panel zooms into the year of simulation starting on November 1 in order to better highlight the differences
between the fatalities associated to each policy.
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Table C–5: Lombardia and Veneto: final main outcome with parameters from Garg (2020)
and β(m) = 0.9

Policies

LOCK SEC AGE SEC AGE ALL

Lombardia

Total fatalities 28621 37066 37745 34702 43702

GDP loss 0.26 0.104 0.094 0.148 0

Final immunity share 0.058 0.070 0.071 0.066 0.079

Average Rt 1.004 1.008 1.009 1.008 1.009
(0.771-1.397) (0.737-1.397) (0.732-1.397) (0.756-1.397) (0.700-1.409)

Veneto

Total fatalities 11311 17634 17956 15540 22556

GDP loss 0.26 0.104 0.097 0.150 0

Final immunity share 0.039 0.055 0.057 0.050 0.068

Average Rt 0.983 0.991 0.991 0.989 0.996
(0.772-1.239) (0.740-1.254) (0.739-1.260) (0.753-1.239) (0.732-1.334)

Note: The table reports the main outcomes of the five policies in Lombardia and Veneto, for the scenario with behavioural
response and β(m) = 0.9, measured over the year between November 1, 2020 and October 31, 2021. Final immunity share is
calculated at the end of the simulation period taking into account the total exposed from January 1, 2020. The numbers in
the parentheses indicate the minimum and maximum Average Rt during the simulation period (they do not define a confidence
interval.

Table C–6: Lombardia and Veneto: final main outcome with parameters from Garg (2020)
and β(m) = 0.7

Policies

LOCK SEC AGE SEC AGE ALL

Lombardia

Total fatalities 12504 18748 19244 16714 23808

GDP loss 0.26 0.104 0.094 0.148 0

Final immunity share 0.038 0.046 0.047 0.044 0.053

Average Rt 0.953 0.964 0.965 0.962 0.971
(0.813-1.397) (0.791-1.397) (0.790-1.397) (0.799-1.397) (0.770-1.397)

Veneto

Total fatalities 2435 5473 5673 4249 8915

GDP loss 0.26 0.104 0.097 0.150 0

Final immunity share 0.015 0.024 0.025 0.020 0.033

Average Rt 0.914 0.938 0.940 0.935 0.947
(0.844-1.239) (0.820-1.239) (0.816-1.239) (0.850-1.239) (0.783-1.239)

Note: The table reports the main outcomes of the five policies in Lombardia and Veneto, for the scenario with behavioural
response and β(m) = 0.7, measured over the year between Novbember 1, 2020 and October 31, 2021. Final immunity share
is calculated at the end of the simulation period taking into account the total exposed from January 1, 2020. The numbers in
the parentheses indicate the minimum and maximum Average Rt during the simulation period (they do not define a confidence
interval.
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Table C–7: Worker activation vector of the efficient policies in Lombardia and Veneto with
behavioural response, β(m) = 0.7 and parameters from Garg (2020)

Low-Risk sector High-Risk sector
Age brackets Age brackets

Policy 20-29 30-39 40-49 50-59 60-65 20-29 30-39 40-49 50-59 60-65

Efficient AGE SEC policies common to both regions

p = ALL 1 1 1 1 1 1 1 1 1 1

p = AGE SEC1 1 1 1 1 1 1 1 1 1 0.6

p = AGE SEC2 1 1 1 1 1 0.6 1 1 1 0.6

p = AGE SEC3 1 1 1 1 1 1 1 1 0.6 1

p = AGE SEC4 1 1 1 1 1 1 1 1 0.6 0.6

p = AGE SEC5 1 1 1 1 1 0.6 1 1 0.6 0.6

p = AGE SEC6 1 1 1 1 1 1 0.6 1 0.6 0.6

p = AGE SEC7 1 1 1 1 0.6 1 1 0.6 0.6 0.6

p = AGE SEC8 1 1 1 1 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC9 1 1 1 0.6 1 0.6 1 0.6 0.6 0.6

p = AGE SEC10 1 1 1 0.6 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC 1 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC11 0.6 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC12 0.6 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC13 1 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC14 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC15 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC16 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Efficient AGE SEC policies for Lombardia only

p = AGE SEC17 1 1 1 1 1 1 1 0.6 0.6 0.6

Efficient AGE SEC policies for Veneto only

p = AGE SEC18 1 1 1 1 0.6 1 0.6 1 0.6 0.6

p = AGE SEC19 0.6 1 1 1 0.6 1 1 0.6 0.6 0.6

p = AGE SEC20 0.6 1 1 1 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC21 1 1 1 0.6 1 1 1 0.6 0.6 0.6

p = AGE SEC22 1 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Other representative policies close to the efficient contour

p = AGE 1 1 1 0.6 0.6 1 1 1 0.6 0.6

p = SEC 1 1 1 1 1 0.6 0.6 0.6 0.6 0.6

Note: This table reports the labor force activation vector for all the efficient and representative policies.
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Table C–8: Worker activation vector of the efficient policies in Lombardia and Veneto with
behavioural response, β(m) = 0.9 and parameters from Garg (2020)

Low-Risk sector High-Risk sector
Age brackets Age brackets

Policy 20-29 30-39 40-49 50-59 60-65 20-29 30-39 40-49 50-59 60-65

Efficient AGE SEC policies common to both regions

p = ALL 1 1 1 1 1 1 1 1 1 1

p = AGE SEC1 1 1 1 1 1 1 1 1 1 0.6

p = AGE SEC2 1 1 1 1 1 0.6 1 1 1 0.6

p = AGE SEC3 1 1 1 1 1 1 1 1 0.6 1

p = AGE SEC4 1 1 1 1 1 1 1 1 0.6 0.6

p = AGE SEC5 1 1 1 1 1 0.6 1 1 0.6 0.6

p = AGE SEC6 1 1 1 1 1 1 1 0.6 0.6 0.6

p = AGE SEC7 1 1 1 1 0.6 1 1 0.6 0.6 0.6

p = AGE SEC8 1 1 1 0.6 1 0.6 1 0.6 0.6 0.6

p = AGE SEC9 1 1 1 0.6 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC 1 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC10 0.6 1 1 0.6 0.6 1 0.6 0.6 0.6 0.6

p = AGE SEC11 0.6 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC12 1 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC13 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC14 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

p = AGE SEC15 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Efficient AGE SEC policies for Lombardia only

p = AGE SEC16 1 1 1 1 1 1 1 0.6 0.6 1

p = AGE SEC17 1 1 1 1 0.6 0.6 1 0.6 0.6 0.6

p = AGE SEC18 0.6 1 1 1 0.6 0.6 1 0.6 0.6 0.6

Efficient AGE SEC policies for Veneto only

p = AGE SEC19 1 1 1 1 1 1 0.6 1 0.6 0.6

Other representative policies close to the efficient contour

p = AGE 1 1 1 0.6 0.6 1 1 1 0.6 0.6

p = SEC 1 1 1 1 1 0.6 0.6 0.6 0.6 0.6

Note: This table reports the labor force activation vector for all the efficient and representative policies.
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