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Section 1

Why do we need large sample hypothesis

testing?
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No need of distributional assumptions

More than precision, the advantage of a large sample for testing is

that no distributional assumption on the outcome Y is needed.

In particular we do not have to assume MLR 6: normality of U|X .

This is particularly important from a methodological point of view

because it allows us to use all the machinery of regression analysis

also in cases where normality is clearly a wrong assumption:

I Discrete dependent variables

I Limited dependent variables

I “Conditional on positive" models

I Duration analysis

I Count data analysis

Thanks to large samples, econometrics becomes considerably

simpler!
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Section 2

The “trinity” of large sample testing

strategies
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Justification of the three tests in a nutshell
H0 : θ = θ0 (1)

1. Wald test
I Under the null, the normalised distance between θ̂ and θ0 should

be small.

2. Lagrange multiplier (or Score) test
I Under the null, the score lθ(X , θ0) evaluated at θ0 should be close

to zero .

3. Likelihood ratio test
I The ratio between the likelihood L(X , θ̂) evaluated at at the

estimate θ̂ and the likelihood L(X , θ0) evaluated at θ0 should be

close to 1.

Figure 3.1 in Engle’s Handbook chapter is a useful way to think at the

three tests
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Subsection 1

The Wald test
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The logic of the Wald test in detail

We have established that

√
n(θ̂n − θ)

d−→ Normal(0,Ω) (2)

where (see previous slides on asymptotics):

I Ω = 1
I1(θ)

in the case of ML;

Therefore, under the null,

W =

√
n(θ̂n − θ)√

Ω

d−→ Normal(0,1) (3)

or, taking squares

W 2 =
n(θ̂n − θ)2

Ω
d−→ χ2

1 (4)
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The logic of the Wald test in detail (comments)

I Given a random sample, estimates of
√

Ω must be used. :

Ω̂ =
1

În(θ̂ML)
=

n∑n
i=1 lθθ(X , θ̂ML)

(5)

I The null H0 : θ = θ0 is rejected at a significance s when:

Ŵ 2 > χ2
1,s (6)

where χ2
1,s is the critical value c of the χ2

1 such that

Pr(W 2 > c|H0) = s with W 2 ∼ χ2
1 (7)

The p-value is p = Pr(χ2
1 > Ŵ 2)
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Subsection 2

The Lagrance Multiplier (or Score) test
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The logic of the LM test in detail

It can be shown that under the null:

√
n(lθ(X , θ))

d−→ Normal(0,
1
I1(θ)

) (8)

Intuitively, lθ(X , θ) is the average of iid random variables (the ln of the

derivatives of the pdf of each observation) with mean zero and

variance 1
I1(θ)
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The logic of the LM test in detail (cont.)
Therefore, under the null,

LM =

√
n(lθ(X , θ0)√

1
I1(θ0)

d−→ Normal(0,1) (9)

or, taking squares

LM2 =
n(lθ(X , θ0)2

1
I1(θ0)

d−→ χ2
1 (10)

Note that LM test statistics can be computed without having to find

the ML estimate.

The name of the test comes from the fact that implicitly we are

maximizing the likelihood subject to the constraint θ = θ0

max L(X , θ) + λ(θ − θ0) ⇒ λ = Lθ (11)
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The logic of the LM test in detail (comments)

I Estimates of the Information at θ0 must be used:

1
În(θ0)

= − n∑n
i=1 lθθ(X , θ0)

(12)

I The null H0 : θ = θ0 is rejected at a significance s when:

L̂M2 > χ2
1,s (13)

where χ2
1,s is the critical value c of the χ2

1 such that

Pr(LM2 > c|H0) = s with LM2 ∼ χ2
1 (14)

The p-value is p = Pr(χ2
1 > L̂M2)
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Subsection 3

The Likelihood Ratio test
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The logic of the LR test in detail

Under H0 : θ = θ0, expand the log likelihood l(θ0) around θ̂ML

l(θ0) = l(θ̂ML) + lθ(θ̂ML)(θ0 − θ̂ML)− 1
2

(θ̂ML − θ0)2lθθ(θ̃) (15)

where θ̃ is some intermediate point between θ̂ML and θ0, and

− 1
N

lθθ(θ̃)
p−→ I1(θ) (16)

Note that lθ(θ̂ML) = 0 and therefore we can write:

LR = 2(l(θ0)− l(θ̂ML)) =
(
√

N(θ̂ML − θ0))2

(I1(θ))−1 ∼ χ2
1 (17)

where the LHS is the Likelihood Ratio Test
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The logic of the LR test in detail (comments)

I The null H0 : θ = θ0 is rejected at a significance s when:

L̂R
2
> χ2

1,s (18)

where χ2
1,s is the critical value c of the χ2

1 such that

Pr(LR2 > c|H0) = s with LR2 ∼ χ2
1 (19)

The p-value is p = Pr(χ2
1 > L̂R

2
)
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Section 3

Large sample testing and regression
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A general formulation of an hypothesis concerning β

Given the PRF

Y = Xβ + U (20)

let’s now consider the most general formulation of an hypothesis

concerning β:

H0 : r(β) = q against H1 : r(β) 6= q (21)

where r(.) is any function of the parameters and r(β)− q is a ρ× 1

vector, if ρ is the number of restrictions.

So H0 and H1 are systems of ρ equations if there are ρ restrictions.
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An example

Example :

H0 : r(β) = Rβ = q against H1 : r(β) = Rβ 6= q (22)

where R is a ρ× k + 1 matrix which charaterize the ρ restrictions on

the parameters that we would like to test.
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Exercise on the specification of a set of restrictions

Suppose that you are estimating the log of a Cobb Douglas

production function in which output depends on labor and capital and

you want to test:

I constant returns to scale;

I the return to one unit of labor is twice the return to one unit of

capital;

I there exist neutral technological progress/regress.

What is R for these restrictions?
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Subsection 1

Wald test in the context of regression
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The logic of the Wald test

If the restrictions are valid the quantity r(β̂)− q should be close to 0

while otherwise it should be far away from 0.

The Wald form of the test statistic that captures this logic is

W = [r(β̂)− q]′[Var(r(β̂)− q)]−1[r(β̂)− q] (23)

In other words we want to evaluate how far away from 0 is r(β̂)− q

after normalizing it by its average variability.

Note that W is a scalar.
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Implementation of the test

If r(β̂)− q is normally distributed, under H0

W ∼ χ2
ρ (24)

where the number of degrees of freedom ρ is the number of

restrictions to be tested.

The difficulty in computing the test statistics is how to determine the

variance at the denominator.
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The Variance of the Wald Test Statistic

Using the Delta Method in a setting in which h(β̂) = r(β̂)− q

Var [r(β̂)− q] =

[
∂r(β̂)

∂β̂

]
[Var(β̂)]

[
∂r(β̂)

∂β̂

]′
(25)

where note that
[
∂r(β̂)
∂β̂

]
is a ρ× k + 1 matrix and therefore

Var [r(β̂)− q] is a ρ× ρ matrix.
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Back to the example

Going back to the example in which r(β̂)− q = Rβ̂ − q

Var [Rβ̂ − q] = R[Var(β̂)]R′ (26)

and the Wald test is

W = [Rβ̂ − q]′[RVar(β̂)R′]−1[Rβ̂ − q] (27)

and Var(β̂) is in practice estimated by substituting the sample

counterparts of the asymptotic variance-covariance matrice
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Exercise: Wald test and simple restrictions
Consider again the unrestricted regression in matrix form

Y = X1β1 + X2β2 + Uur (28)

where

I X1 is a n × 2 matrix including the constant;

I β1 is dimension 2 vector of parameters;

I X2 is a n × 1 matrix;

I β2 is dimension 1 vector of parameters;

and suppose that we want to test the following joint hypothesis on the

β2 parameters:

H0 : β2 = 0 against H1 : β2 6= 0 (29)

What is R in this case?
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Exercise: Wald test and simple restriction (cont.)

It is easy to verify that in this case the Wald test is

W = [Rβ̂ − q]′[RVar(β̂)R′]−1[Rβ̂ − q] (30)

=
β̂2

2

Var(β̂2)

which is the square of a standard t-test, and is distributed as a χ2

distribution
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A drawback of the Wald Test

The Wald test is a general form of a large sample test that requires

the estimation of the unrestricted model.

There are cases in which this may be difficult or even impossible.

An alternative large sample testing procedure is the Lagrange

Multiplier test, which requires instead only the estimation of the

restricted model.

A third alternative is the Likelihood Ratio test, which requires the

estimation of both the restricted and the unrestricted models, on an

equal basis.

28 / 36



Subsection 2

The Lagrange multiplier test in the context of linear
regression
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The logic of the test

In the simple context of linear regression we can define a LM test for

multiple exclusion restrictions. Consider again the unrestricted

regression in matrix form

Y = X1β1 + X2β2 + Uur (31)

I X1 is a n × k1 + 1 matrix including the constant;

I β1 is dimension k1 + 1 vector of parameters;

I X2 is a n × k2 matrix;

I β2 is dimension k2 vector of parameters;

Suppose that we want to test the following joint hypothesis on the β2:

H0 : β2 = 0 against H1 : β2 6= 0 (32)
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The logic of the test (cont.)

Suppose that you estimate the restricted PRF

Y = X1βr1 + Ur (33)

where the subscript r indicates that the population parameters and

unobservables of this restricted equation may differ from the

corresponding one of the unrestricted PRF.

It is intuitive to hypothesize that in the auxiliary regression

Ûr = X1γ1 + X2γ2 + V (34)

if the restrictions in the primary PRF are valid then

H0 : β2 = 0 ⇒ γ2 = 0 (35)
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The logic of the test (cont.)

Let the R-squared of the auxiliary regression 34 be R2
U and consider

the statistics

LM = nR2
U (36)

If the restrictions are satisfied, this statistics should be close to zero

because;

I X1 is by construction orthogonal to UR and therefore γ1 = 0;

I and γ2 = 0 if the restrictions are satisfied.

Since, given k2 exclusion restrictions:

LM = nR2
U ∼ χ2

k2
(37)

we can use the Classical testing procedure to test H0.
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Subsection 3

The Likelihood Ratio Test in the context of regression
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Derivation of the LR test

Continuing with the regression framework used to discuss the LM

test, the LR test is derived as follows:

I Get the ML estimate of the unrestricted regression and retrieve

the unrestricted normalized log likelihood lU

I Get the ML estimate of the restricted regression and retrieve the

restricted normalized log likelihood lR

I Then given k2 the test statisic is

LR = 2(lR − lU) ∼ χ2
k2

(38)
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Subsection 4

Final comment on the “trinity of tests”
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Relationship between the three tests

From the Handbook Chapter 13 by Robert Engle

“ These three general principles have a certain symmetry which has

revolutionized the teaching of hypothesis tests and the development

of new procedures

Essentially, the Lagrance Multiplier approach starts at the null and

asks whether movement toward the alternative would be an

improvement ...

... while the Wald approace starts at the alternative and considers

movement toward the null

The Likelihood ratio method compares the two hypothesis directly on

an equal basis.

Figure 3.1 in Engle’s chapter is a useful way to think at the three tests.
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