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Section 1

The logic of classical hypothesis testing
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The question we want to address now

We are now interested in testing hypothesis concerning the

parameters of the PRF, using the estimator that we have constructed

and analysed in the previous sections.

Here are some examples of hypotheses that we may want to test

I βj = 0;

I βj = q where q is any real number;

I βj ≤ q where q is any real number, including 0;

I βj = βh;

I β2
j − 2βjβi = 0

I r(β) = q where r(.) is any function of the parameters.
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What does it mean to test an hypothesis in statistics

I Define the “null hypothesis" H0 to be tested on a parameter.

I Construct a “test statistic" and find its distribution under H0.

I Compute the test statistic in the specific sample at our disposal.

I Using the theoretical distribution of the test statistic establish the

probability of observing its observed value if H0 is true.

I If this probability is “sufficiently small" reject H0.

I The “significance" of the test is the threshold level of probability

that we consider sufficiently low to conclude that it is unlikely that

the observed test statistics could have originated under H0.

I The “p-value" of the test is the smallest significance level at

which H0 would actually be rejected given the sample. Note that

the p-value is a probability
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Power of a test, Type I and type II errors
The significance of a test measures the probability of rejecting H0

when it is true,

I This is the probability of “Type I" decision errors.

But given a specific alternative H1, we are interested also in the

probability of failing to reject H0 when H1 is in fact true

I This is the probability of “Type II" decision errors.

The “power of a test" with respect to a specific alternative, is 1 minus

the probability of Type II errors:

I the probability of not rejecting the alternative when it is true

Computing the power of a test requires defining a specific alternative

and the distribution of the test statistic under H1

For given significance and alternative, we are interested in finding the

test with the highest power.
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Section 2

Small sample distribution of the OLS

estimator
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How can we find a distribution for the OLS parameters

If we have a large sample and we can use asymptotic results, using

I the Central Limit Theorem

I The Delta Method

we can say that:

√
n(β̂1 − β1)

d−→ Normal
(

0,
σ2

Var(x)

)
(1)

without making distributional assumptions on X .

But if we are in a small sample setting, we need distributional

assumptions on X to say how β̂OLS is distributed

Note that in the case of β̂ML the small sample distribution is normal

because we have assumed normality to construct the estimator.
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The assumption of Normality of U

The Classical Linear Model Assumption is Normality:

I MLR 6: In the population U is independent of X and is distributed

normally with zero mean and variance σ2In

U ∼ Normal(0, σ2In) (2)

Note that this implies

Y ∼ Normal(Xβ, σ2In) (3)

Discussion of the small sample assumption of Normality.
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From the distribution of U to the distribution of β̂

We know that

β̂ = β + (X ′X )−1X ′U (4)

using 2 it is easy to see that

β̂ ∼ Normal(β, σ2(X ′X )−1) (5)

And for a single PRF parameter we have that the standardized

distribution
β̂j − β
sd(β̂j )

=
β̂j − β

σ√
SSTj (1−R2

j )

∼ Normal(0,1) (6)
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From the distribution of U to that of β̂ (cont.)

In practice, we do not know σ and we have to use its estimate

σ̂ = Û′Û
n−k−1 so that:

β̂j − β
ŝd(β̂j )

=
β̂j − β

σ̂√
SSTj (1−R2

j )

∼ tn−k−1 (7)

where tn−k−1 denotes a “t distribution" with n − k − 1 degrees of

freedom.
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Section 3

A list of possible hypotheses and the

correspondent tests
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H0 : βj = 0 against the one sided alternative H1 : βj > 0
The simplest testable hypothesis is that Xj has positive effect on Y

H0 : βj = 0 against H1 : βj > 0 (8)

The test statistic for this hypothesis and its distribution under H0 are

tβ̂j
=

β̂j

ŝd(β̂j )
∼ tn−k−1 (9)

We reject H0 if in our sample

tβ̂j
=

β̂j

ŝd(β̂j )
> c (10)

where the critical level c > 0 is such that

Pr(τ > c|H0) = s with τ ∼ tn−k−1 (11)

s is the significance level (e.g. s = 0.01 or s = 0.05). The p-value is:

p = Pr(τ > tβ̂j
=

β̂j

ŝd(β̂j )
|H0) (12)
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H0 : βj = 0 against the one sided alternative H1 : βj < 0
Similarly we can test that Xj has a negative effect on Y

H0 : βj = 0 against H1 : βj < 0 (13)

The test statistic for this hypothesis and its distribution unde H0 are

tβ̂j
=

β̂j

ŝd(β̂j )
∼ tn−k−1 (14)

We reject H0 if in our sample

tβ̂j
=

β̂j

ŝd(β̂j )
< −c (15)

where the critical level −c < 0 is such that

Pr(τ < −c|H0) = s with τ ∼ tn−k−1 (16)

s is the significance level (e.g. s = 0.01 or s = 0.05). The p-value is:

p = Pr(τ < tβ̂j
=

β̂j

ŝd(β̂j )
|H0) (17)
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H0 : βj = 0 against a two sided alternative H1 : βj 6= 0
More generally we can test that Xj has a non zero effect on Y

H0 : βj = 0 against H1 : βj 6= 0 (18)

The test statisticand its distribution under H0 are again

tβ̂j
=

β̂j

ŝd(β̂j )
∼ tn−k−1 (19)

We reject H0 if in our sample

|tβ̂j
| =

∣∣∣∣∣ β̂j

ŝd(β̂j )

∣∣∣∣∣ > c (20)

where the critical level c is such that

Pr(|τ | > c|H0) = 0.5s with τ ∼ tn−k−1 (21)

s is the significance level (e.g. s = 0.01 or s = 0.05). The p-value is:

p = 2Pr(τ > |tβ̂j
| =

∣∣∣∣∣ β̂j

ŝd(β̂j )

∣∣∣∣∣ |H0) (22)
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H0 : βj = k against the two sided alternative H1 : βj 6= k
In this case we test that the effect of Xj has a specific size:

H0 : βj = k against H1 : βj 6= k (23)

The test statistic and its distribution under H0 are again

tβ̂j
=
β̂j − k
ŝd(β̂j )

∼ tn−k−1 (24)

We reject H0 if in our sample

|tβ̂j
| =

∣∣∣∣∣ β̂j − k
ŝd(β̂j )

∣∣∣∣∣ > c (25)

where the critical level c is such that

Pr(|τ | > c|H0) =
1
2

s with τ ∼ tn−k−1 (26)

s is the significance level (e.g. s = 0.01 or s = 0.05). The p-value is:

p = 2Pr(τ > |tβ̂j
| =

∣∣∣∣∣ β̂j − k
ŝd(β̂j )

∣∣∣∣∣ |H0) (27)
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Section 4

Confidence intervals
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What if we care about intervals of the parameter?

Consider the interval {−λΦ, λΦ} defined by the equation:

Pr

(
−λΦ <

β̂j − βj

ŝd(β̂j )
< λΦ

)
= Φ (28)

The limits {−λΦ, λΦ} can be computed using the fact that

β̂j − β
ŝd(β̂j )

∼ tn−k−1

Rearranging 28:

Pr
(
β̂j − λΦŝd(β̂j ) < β < β̂j + λΦŝd(β̂j )

)
= Φ (29)

which says that with probability Φ the interval {β̂j ± λΦŝd(β̂j )}
contains the parameter β.
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Confidence interval in large sample

In large sample, when the t distribution approximates normal

distribution, a realiable approximation of the 95% confidence interval

is

Pr
(
β̂j − 1.96ŝd(β̂j ) < β < β̂j + 1.96ŝd(β̂j )

)
= 0.95 (30)

which means that with 95% probability an interval of two standard

deviations around the estimate contains the parameter.
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Section 5

Linear combinations of parameters
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A more complex kind of hypothesis

There are situations in which we are interested in testing a slightly

more complicated hypothesis:

H0 : βj = βk against H1 : βj 6= βk (31)

The test statistic for this hypothesis and its distribution under H0 are

again

tβ̂j ,β̂k
=

β̂j − β̂k

ŝd(β̂j − β̂k )
∼ tn−k−1 (32)

and we could follow the usual procedure to test the hypothesis
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A more complex kind of hypothesis (cont.)

What is slighlty more problematic in this case is the computation of

ŝd(β̂j − β̂k ) =

√
[ŝd(β̂j ]2 + [ŝd(β̂k ]2 − 2 ˆCov(β̂j , β̂k ) (33)

Given that Var(β̂|X ) = σ̂2(X ′X )−1 we have all the ingredients to

compute the test statistics. But there is a simpler alternative.
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Rearranging the PRF to test linear combinations
Consider the population regression:

y = β0 + β1x1 + β2x2 + u (34)

and suppose that we want to to test

H0 : β1 = β2 against H1 : β1 6= β2 (35)

If we add and subtract β2x1 in 34, we get:

y = β0 + (β1 − β2)x1 + β2(x2 + x1) + u (36)

y = β0 + θx1 + β2(x2 + x1) + u

and we can now test with the standard procedure:

H0 : θ = 0 against H1 : θ 6= 0 (37)

Note that the estimates of the coefficients on x2 in 34 and on (x2 + x1)

in 36 must be numerically identical.
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Section 6

The F-test
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Multiple linear restrictions

Consider the unrestricted regression in matrix form

Y = X1β1 + X2β2 + Uur (38)

I X1 is a n × k1 + 1 matrix;

I β1 is k1 + 1 vector of parameters;

I X2 is a n × k2 matrix;

I β2 is k2 vector of parameters;

Suppose that we want to test the following joint hypothesis on the β2:

H0 : β2 = 0 against H1 : β2 6= 0 (39)

In which sense and why testing the joint hypothesis is different than

the testing the k2 separate hypotheses on the β2 parameters?
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The F test statistics

Consider the restricted regression

Y = X1β1 + Ur (40)

and the unrestricted PRF 38.

A natural starting point to construct a test statistic for the joint

hypothesis is to see by how much the Sum of Squared Residuals

(SSR) increases going from the restricted to the unrestricted PRF
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The F test statistics (cont.)

The F statistic is built around this idea:

F =

(SSRr−SSRur )
k2

SSRur
n−k−1

∼ Fk2,n−k−1 (41)

where k2 is the number of restrictions (the dimension of X2) and k is

the total number of parameters.

The F statistic is distributed accordint to an F distribution because it

can be shown to be the ratio of two χ2 distributions.

Note that the numerator of F is always positive and it is larger, the

larger the reduction of SSR delivered by the unrestricted PRF.
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The F test statistics (cont.)

We reject H0, if our sample gives

|F | ≥ c (42)

where the critical level c is such that

Pr(f > c|H0) = s with f ∼ Fk2,n−k−1 (43)

s is the significance level (e.g. s = 0.01 or s = 0.05). The p-value is:

p = Pr(f > F |H0) (44)

Note that the F statistics can be construced not only for exclusion

restrictions but also for more complicated linear restrictions, as long

as we can specify the restricted and unrestricted PRF.

28 / 30



The “R-squared" form of the F test

In some cases it may be convenient to exploit the fact that

SSRr = (1− R2
r ) (45)

SSRur = (1− R2
ur ) (46)

and therefore the F statistics can be expressed as a function of the

R-squared of the restricted and unrestricted distribution:

F =

(R2
ur−R2

r )
k2

1−R2
ur

n−k−1

∼ Fk2,n−k−1 (47)

This form of the test is completely equivalent but more convenient for

computational purposes.
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The F test and the overall significance of a regression

Most packages report the F test for the joint hypothesis that all the

regressors have no effect:

H0 : β = 0 against H1 : β 6= 0 (48)

In this case the restricted PRF is

y = β0 + Ur (49)

and the F test is

F =
(R2)

k
1−R2

n−k−1

∼ Fk,n−k−1 (50)

because the R-squared of the restricted PRF is zero.

This F test provides the same info of the R-squared statistic, but it is

framed to allows for a test on the significance of all the regressors.
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