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A basic list of useful asymptotic results

We do not have time for a proper treatment of asymptotic theory in

this short course.

Here we just report some basic results, used in the lecture notes,

concerning:

I Concepts of convergence

I Laws of large numbers

I Limit theorems

I Other useful theorems for asymptotic calculus

For proofs, see Casella and Berger
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A note on “how large” is “large”

We will never have a sample of size n =∞. Are then asymptotic

results useless?

No: the good properties of asymptotic results may be achieved in

practice even in samples of finite size n <∞.

This is the reason why asymptotic results are useful even if it is

obvious that we will never have an infinite sample.

A finite sample may be sufficiently “large” for asymptotic results to

hold with a very good approximation, even if its size is effectively not

so large.
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Section 1

Convergence in probability,

Weak Law of Large Numbers

and Continous Mapping Theorem
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Definition of convergence in probability

A sequence of random variables Xn converges in probability to a

random variable X if

lim
n→+∞

Pr(|Xn − X | > ε) = 0 ∀ε (1)

Equivalent notations to denote convergence in probability are

Xn
p−→ X (2)

Plim
n→+∞

Xn = X (3)
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Continuous mapping theorems for P-convergence

1. For any random variable Xn and continuous function h(.):

Plim
n→+∞

Xn = X ⇒ Plim
n→+∞

h(Xn) = h(X ) (4)

2. Given two random variables such that

Xn
p−→ X and Zn

p−→ Z (5)

then

Plim
n→+∞

(Xn + Zn) = X + Z (6)

Plim
n→+∞

(XnZn) = XZ (7)

Plim
n→+∞

(
Xn

Zn

)
=

X
Z

(8)
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Weak Law of Large Numbers
Consider a sample of iid random variables {X1, ...,Xn} with

E(Xi ) = µ and Var(Xi ) = σ2 (9)

then
1
n

n∑
i=1

Xi = X̄
p−→ µ (10)

The proof is a straightforward application of Chebychev inequality

The WLLN states that under fairly general conditions, sample

moments converge in probability to population moments.

See Casella and Berger for the concept of Almost sure convergence

(less relevant for econometrics) and the correspond Strong Law of

Large Numbers
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Section 2

Convergence in distribution,

Central Limit Theorem

and Slutzky Theorem
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Definition of convergence in distribution
A sequence of random variables Xn converges in distribution to a

random variable X if

lim
n→+∞

FXn (x) = FX (x) ⇐⇒ Xn
d−→ X (11)

for all values x for which the Cumulative Distribution Function FX (x) is

continuous.

It can be shown that Convergence in Probability implies Convergence

in Distribution but the converse is not true

Xn
p−→ X ⇒ Xn

d−→ X (12)

However, if Xn
d−→ C and C is a constant, then

Xn
d−→ C ⇒ Xn

p−→ C (13)
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Mapping theorems for D-convergence
1. Continuous Mapping: for any random variable Xn and continuous

function h(.):

Xn
d−→ X ⇒ h(Xn)

d−→ h(X ) (14)

2. Slutzky: Given two random variables such that

Xn
d−→ X and Zn

p−→ C (15)

where C is a constant, then

(Xn + Zn)
d−→ X + C (16)

(XnZn)
d−→ XC (17)(

Xn

Zn

)
d−→ X

C
(18)
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Central Limit Theorem

Consider a sample of iid random variables {X1, ...,Xn} with

E(Xi ) = µ and Var(Xi ) = σ2 <∞. (19)

Let
1
n

n∑
i=1

Xi = X̄n and
√

n(X̄n − µ) ∼ Gn(x) (20)

Then

lim
n→+∞

Gn(x) =

∫ x

−∞

1√
2πσ2

e−
(x−µ)2

2σ2 (21)

i.e.
√

n(X̄n − µ) converges to a normal distribution with zero mean

and variance equal to σ2.

√
n(X̄n − µ)

d−→ N(0, σ2) (22)
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Why is the CLT so crucially important for us?
Starting from an iid random sample,

I without making any distributional assumption,

the theorem states that moments of the sample are distributed

according to a Standardised Normal, after

I subtracting the moment’s mean,

I dividing for the moment’s standard deviation

I and multiplying for the root square of the sample size

This result is extremely useful and powerful because it allows us

I to characterize the distribution of sample statistics (in particular

large sample test statistics),

I even when we know nothing about the distribution of the random

variables from which the sample has been drawn.
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Section 3

Delta method
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D-Convergence of random variable transformations
Consider a sequence of random variables Xn such that

√
n(Xn − θ)

d−→ Normal(0, σ2) (23)

For any given function g(.) and a specific value of θ, suppose that

g′(θ) exists and is not 0. Then:

√
n(g(Xn)− g(θ))

d−→ Normal(0, σ2(g′(θ))2)) (24)

This result is crucial to characterise the asymptotic distribution of a

transformation of a test statistic.

Pay attention to the difference between the Delta Method result and

the Continuous Mapping theorem for D-convergence, which says that

g
(√

n(Xn − θ)
) d−→ g

(
Normal(0, σ2)

)
(25)
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