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Section 1

The traditional Interpretation of IV estimation
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The setup

Let’s continue to assume that

» U;(1) = U;(0) : no idiosyncratic gain from treatment;
> A= p(1) — u(0)

so that the model in compact form is

Yi = u(0) + AD; + U

D =a+pBZ+V

(1 D0
D"{o ifD,-*<0}

E{U} = E{Vi} =0
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The IV estimator

If subjects are not randomly selected into treatment:
COV{U,V} =E(UV)#£0 (5)

and OLS gives an inconsistent estimate of A.

plim{Ao.s} = 760\‘//gi DY _ast 700\‘//{{% D} # A (6)
But under the assumptions
COV(Z,D) #0 7)
cov(U,Z) =o. 8)
satisfied by our compact model, we have that:
5D -0 BT sy

Substituting the appropriate sample covariances on the LHS of 9 we get the
well known IV estimator A)y.

We will now explore a more recent and inspiring interpretation of this

estimator.
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Section 2

Instrumental variables as “quasi-experiments”
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Setup and notation
Consider the following notation:

» N units denoted by /.
» They are exposed to two possible levels of treatment: D; = 0 and D; = 1.
> Y;is a measure of the outcome.

» Z; is a binary indicator that denotes the assignment to treatment.

Three crucial issues:
1. assignment to treatment may or may not be random;

2. assignment to treatment may or may not affect the outcome for given
treatment status;

3. the correspondence between assignment and treatment may be
imperfect.

Examples: Willis and Rosen (1979), Angrist (1990), Angrist and Krueger
(1991), Card (1995), Ichino and Winter-Ebmer (2004).

7/28



Participation into treatment

Participation into treatment depends on the vector of assignments Z
D; = Di(Z) (10)

The outcome depends on the vector of assignments Z and treatments D:
Y = Y/(Z,D) (11)

Note that in this framework we can define three (main) causal effects:
» the effect of assignment Z; on treatment D;;
> the effect of assignment Z; on outcome Y;;

» the effect of treatment D; on outcome Y.
The first two of these effects are called intention-to-treat effects.

The Angrist-Imbens-Rubin Causal model (see Angrist et. al. 1996) defines
the minimum set of assumptions that ensures the identification of these
effects for a relevant subgroup in the population.
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Section 3

Assumptions of the Angrist-Imbens-Rubin causal model
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Assumption 1: Stable Unit Treatment Value Assumption

Assumption

The potential outcomes and treatments of unit i are independent of the
potential assignments, treatments and outcomes of unitj # i:

1. Di(Z) = Di(Z)
2. Yi(Z,D) = Yi(Z, D)

Given this assumption we can write the intention-to-treat effects as:
Definition
The Causal Effect of Z on D for unit i is

Di(1) — D;(0)

Definition
The Causal Effect of Z on Y for unit i is

Yi(1, Di(1)) — Yi(0, Di(0))

10/28



Potential outcomes and SUTVA
Counterfactual reasoning requires to imagine that for each subject the sets of
» potential outcomes [Y;(0,0), Yi(1,0), Y;(0,1), Yi(1,1)]
> potential treatments [D;(0) = 0, D;(0) = 1, D;(1) = 0, D;(1) = 1]
» potential assignments [Z; = 0,2 = 1]

exist, although only one item for each set is actually observed.

Implications of SUTVA for general equilibrium analysis and external validity.

If SUTVA holds, we can classify subjects according to the following useful
typology.
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A useful classification

Table: Classification of units according to assignment and treatment status

D;(1) =0 | Never-taker

Defier

Di(1) =1 Complier | Always-taker

Examples: Willis and Rosen (1979), Angrist (1990), Angrist and Krueger

(1991), Card (1995), Ichino and Winter-Ebmer (2004).
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Assumption 2: Random Assignment (ignorability)

Assumption
All units have the same probability of assignment to treatment:

Pr{Z =1} =PriZ=1)

Given SUTVA and random assignment we can identify and estimate the two
intention to treat causal effects:

E(D1Zz=1)-E(D| 2 -0} = A0 (12)
E{Y,-|Z,-:1}_E{Y,-|z-:0}:70\%‘2[{’/2’12}’} (13)

Note that the ratio between these effects is the IV estimand

coviy,z}

COV{D, Z} (14)

Is this the causal effect of D; on Y;?
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Assumption 3: Non-zero average causal effect of Z on D

Assumption
The probability of treatment must be different in the two assignment groups:

Pr{D;(1) =1} # Pr{D;(0) = 1}

or equivalently
E{D;(1) — Di(0)} # 0

This assumption requires that the assignment to treatment is correlated with
the treatment indicator.

It is easy to test.

It is the equivalent of the*first stage” in the conventional IV approach.
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Assumption 4: Exclusion Restrictions

Assumption

The assignment affects the outcome only through the treatment and we can
write
Yi(0, D)) = Yi(1, D)) = Yi(D)).

It cannot be tested because it relates quantities that can never be observed
jointly:
\/1(07 DI) = \/1(1 9 DI)

It says that given treatment, assignment does not affect the outcome. So we
can define the causal effect of D; on Y; with the following simpler notation:

Definition
The Causal Effect of D on Y for unit j is

Yi(1) — Yi(0)

15/28



Are the first four assumptions sufficient for identification?

We can now establish the relationship at the unit level between the intention
to treat effects of Z on D and Y and the causal effect of Don Y.

Yi(1, Di(1)) — Yi(0, Di(0))

Yi(Di(1)) — Yi(Di(0))

[Yi()Di(1) + Yi(0)(1 — Di(1))] —
[Yi(1)Di(0) + Yi(0)(1 — Di(0))]

= (Di(1) = Di(0))(Yi(1) = Yi(0))  (15)

At the unit level the causal effect of Z on Y is equal to the product of the the
causal effect of Z on D times the causal effect of Don Y.

Can we take the expectation of both sides of 15 and identify the average
causal effectof Don Y:
E(Yi(1) — Yi(0))?
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The answer is no ...

Because:

E

{Yi(1, Di(1)) — Yi(0, Di(0)) }

E{(Di(1) = Di(0))(Yi(1) — Yi(0))}

E{Yi(1) = i(0) | Di(1) — Di(0) = 1}Pr{Di(1) — Di(0) = 1} —

E{Yi(1) = Yi(0) | Di(1) — Di(0) = =1} Pr{Di(1) — Di(0) = —1}
(16)

Equation 16 shows that even with the four assumptions that were made so far
we still have an identification problem.

What we observe (the left hand side), is equal to the weighted difference
between the average effect for compliers and the average effect for defiers.

To solve this problem we need a further and last assumption.
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Intuition for the final assumption

Table: Causal effect of Z on Y according to assignment and treatment status

Zi=0
Di(0) =0 Di(0) =1
Di(1) =0 Never-taker Defier
Yi(1,0) — ¥i(0,0) =0 Yi(1,0) — Yi(0,1) = —(Yi(1) — Yi(0))
Z =1
Di(1) =1 Complier Always-taker
Yi(1,1) = Yi(0,0) = Yi(1) — Yi(0) Yi(1,1) = vi(0,1) = 0
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Interpretation of the previous table

» Each cell contains the causal effect of Z on Y (the numerator of LATE).

» The SUTVA assumption allows us to write this causal effect for each unit
independently of the others.

» The random assignment assumption allows us to identify the causal
effect for each group.

» Exclusion restrictions ensure that the causal effect is zero for the always-
and never-takers; it is non-zero only for compliers and defiers (via D).

» The assumption of strong monotonicity ensures that there are no defiers
and that compliers exist.

All this ensures that the numerator of the LATE estimator is the average effect
of Z on Y for the group of compliers (absent general equilibrium
considerations).
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Assumption 5: Monotonicity

Assumption

No one does the opposite of his/her assignment, no matter what the
assignment is:
Di(1) > D,(0) vi (17)

This assumption amounts to excluding the possibility of defiers.

The combination of Assumptions 3 and 5 is called Strong Monotonicity
D;(1) > D;(0) Vi with strong inequality for at least some i (18)
and ensures that:
» there is no defier and

> there exists at least one complier.

Since now defiers do not exist by assumption, we can use equation 16 to
identify the average treatment effect for compliers.
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Section 4

The Local Average Treatment Effect
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The LATE

Equation 16 now is:

E {Yi(1,D;(1)) — Yi(0, Di(0))}
= E{Yi(1) - Yi(0) | Di(1) — Di(0) = 1}Pr{D;(1) — Di(0) = 1}
(19)

Rearranging this equation, the Local Average Treatment Effect is defined as:

E{Yi(1,Di(1)) — Yi(0, D;(0)) }
Pr{D;(1) — D;(0) = 1}

E{Yi(1) = Yi(0) | Di(1) = Di(0) =1} =

Definition

The Local Average Treatment Effect is the average effect of treatment for
those who change treatment status because of a change of the instrument;
i.e. the average effect of treatment for compliers.
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Equivalent expressions for the LATE estimator

There are different ways to write the LATE

E{Yi(1)-Yi(0) | Di(1)=1,0i(0) =0}

E{Yi|Zi=1}-E{Yi|Z =0}

= Pr{D(1) =1} — Pr{D,(0) = 1} (20)

_ E{Yi|Z=1}-E{Yi|Z=0} (21)
E{D,|Z =1}-E{D; | Z =0}

. cov{Y,z}

~ cov{D,Z} (22)

» The IV estimand is the LATE.

> The LATE is the only treatment effect that can be estimated by IV, unless
we are willing to make further assumptions.
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Frequency of types in the population

Table: Frequency of types in the population

Z =0
D;i(0)=0 D;(0) =1
Di(1)=0 Never-taker Defier
Pr{D;(1) = 0,D;(0) =0} | Pr{D;(1) =0,D;(0) =1}
Z =1
Di(1) =1 Complier Always-taker

Pr{D;(1) =1, D;(0) = 0}

Pr{D;(1) =1,D;(0) = 1}
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Interpretation of the previous table

In the previous table:

» The denominator of the Local Average Treatment Effect is the frequency
of compliers.

» Note that the frequency of compliers is also the average causal effect of
Zon D (see eq 21):
E{Di|Z =1} - E{D; | Z =0} =
Pr{Di=1]Z =1} — Pr{D;=1] Z = 0}.
> Indeed the LATE-IV estimator is the ratio of the two average

intention-to-treat effects: the effect of Z on Y divided by the effect of Z
on D.
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Comments on the LATE interpretation of IV

» The AIR approach clarifies the set of assumptions under which the IV
estimand is an average causal effect, but shows that this is not the ATT.

> To identify the ATT the conventional approach implicitly assumes that the
causal effect is the same for all treated independently of assignment.

» Translated in the AIR framework this conventional assumption is (see the
debate Heckman-AIR in Angrist et al., 1996):
E{Yi(1) = Yi(0) | Z, Di(Z) = 1} = E{Yi(1) = Yi(0) | Di(Z) =1} (23)
E{Yi(1)-Yi(0) | Di(1)=1:D0i(0) =1} (24)
= E{Yi(1) - Yi(0) | D;(1) =1; D;(0) = 0}

i.e., the causal effect of D on Y must be the same for compliers and
always-taker. Typically this assumption cannot be tested and is unlikely
to hold in many applications.
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Comments on the LATE interpretation of IV (cont.)

> The conventional approach hides also the assumption of strong
monotonicity.

» The AIR approach concludes that the only causal effect that IV can
identify with a minimum set of assumptions is the causal effect for
compliers, i.e. the LATE: the effect of treatment for those who change
treatment status because of a different assignment.

» Intuitively this makes sense because compliers are the only group on
which the data can be informative :

» compliers are the only group with units observed in both treatments (given
that defiers have been ruled out).

» always takers and never-takers are observed only in one treatment.

»> The LATE is analogous to a regression coefficient estimated in linear models
with unit effects using panel data. The data can only be informative about
the effect of regressors on units for whom the regressor changes over the
period of observation.
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Comments on the LATE interpretation of IV (cont.)

» The conventional approach to IV, however, argues that the LATE is a
controversial parameter because it is defined for an unobservable
sub-population and because it is instrument dependent. And therefore it
is no longer clear which interesting policy question it can answer.

» Furthermore it is difficult to think about the LATE in a general equilibrium
context

» Hence, the conventional approach concludes that it is preferable to make
additional assumptions, in order to answer more interesting and well
posed policy questions.

> Yet there are many relevant positive and normative questions for which
the LATE seems to be an interesting parameter in addition to being the
only one we can identify without making unlikely assumptions.
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