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Section 1

The problem of estimation
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The problem of estimation

In the pre-course you have seen how to model data and phenomena

with statistical distributions that depend on unknown parameters:

Example: Bernoulli distribution.

X =

{
1 with probability q

0 with probability 1− q
(1)

X ∼ pX (X = x |q) = qx (1− q)1−x =

{
q for x = 1

1− q for x = 0
(2)

How can we use a random sample of data to get information on the

parameter q in a given population to study the random variable X?

(Note: pay attention to the meanings of X , x , 1, 0, q and pX (.) ... )
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Some notational conventions

I fX (X = x |θ) = fX (x |θ) is the probability density function (pdf) of

the random variable X evaluated at the realization x , given the

parameter θ.

I FX (X = x |θ) = FX (x |θ) is the correspondent cumulative

distribution.

I pX (.) and PX (.) are used in case it is necessary to make explicit

reference to a discrete pdf.
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Estimators and estimates

An estimator is any function of a random sample that gives

information on the parameters of the distribution of a random variable.

I Analogy: the recipe for a cake ...

A random sample is a set of observed realizations of a random

variable, satisfying certain properties (to be discussed below)

I Analogy: the ingredients required by the recipe ...

An estimate is the specific value that the estimator takes when it is

evaluated using the observed realizations of a specific sample

I Analogy: the cake that you actually get when you mix the

ingredients according to the recipe (hopefully a good cake ...)
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How do we choose between estimators

Estimators (like recipes for cakes) have properties that:

I translate into a quality of the estimate (how good is the cake)

I for given quality of the data (how good are the ingredients).

The estimator is a random variable (with a distribution) because it is a

function of the sample observations which are random variables.

The estimate is a number: a function of the sample realizations.

To choose between estimators we will have to study their properties:

I Unbiasedness

I Efficiency

I Consistency

I Other asymptotic properties
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Understanding “randomness” (and independence)

If {X1...Xi ...Xn} are independent draws from a population with density

function f (X |θ), then

I {X1 = x1...Xi = xi ...Xn = xn} is a random sample from the

population defined by f (X |θ).

I each draw Xi is a random variable and xi is its sample realization.

Exercise questions:

I Is your class a random sample of PhD students in economics?

I Subjects with A-L names, are a random sample of Italians?

I If I toss a fair coin for each of you, those who get a tail are a

random sample of the class?

Knowing that Xi = xi should not have info on the realization of Xj .
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Section 2

The method of Maximum Likelihood
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The likelihood function

Let x1, ...xi , ...xn be a random sample of size n from the random

variable X ∼ fX (x |θ), where θ is an unknown (set of) parameters. The

likelihood function is the product of the pdf evaluated at the n

realizations xi :

L(X |θ) =
n∏

i=1

fX (xi |θ) (3)

Note that the likelihood is:

I a function of the parameter θ, given the realizations xi ;

I the pdf of observing the sample realizations as a function of θ;

The method of Maximum Likelihood estimates θ as the value of the

parameter θ that maximizes the likelihood given the realized sample.
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Regularity conditions
Under some regularity conditions, the ML estimator is obtained by

standard maximisation of the likelihood:

I first derivative equal to zero (first order condition);

I negative second derivative (second order condition).

These conditions are:

I f (X |θ) must be
I continuous
I with continuous first order and second order derivatives

I the set of values X for which f (X |θ) 6= 0 must not depend on θ,

i.e. the support of the underlying distribution cannot depend on

the parameter to be estimated.

We will see cases in which these conditions are violated and still we

can derive the ML estimator of the parameter of interest.
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The log-likelihood and the maximization problem
Under the regularity conditions it is simpler to maximize the log

likelihood (given monotonicity of log)

max
θ

l(X |θ) = ln(L(X |θ)) =
n∑

i=1

ln (fX (xi |θ)) (4)

so that the ML estimator of θ is:

θ̂ = arg max
θ

{
lnL(X |θ) =

n∑
i=1

ln(fX (xi |θ))

}
(5)

which has to satisfy the first and second order conditions

d ln(L(X |θ))

dθ
=

n∑
i=1

d ln (fX (xi |θ))

dθ
=

n∑
i=1

1
fX (xi |θ)

dfX (xi , θ)

dθ
= 0 (6)

d2ln(L(X |θ))

(dθ)2 < 0 (7)
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Subsection 1

The ML estimator for the normal distribution
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Example: the Normal distribution

X ∼ fX (x |µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 (8)

The maximization problem is:

max
µ,σ2

L(X |µ, σ2) =
n∏

i=1

1√
2πσ2

e−
(xi−µ)2

2σ2 (9)

max
µ,σ2

l(X |µ, σ2) = −n
2

ln(2πσ2)− 1
2σ2

n∑
i=1

(xi − µ)2 (10)

The two first order condition are:

d ln(L(X |µ, σ2))

dµ
=

1
σ2

n∑
i=1

(xi − µ) = 0 (11)

d ln(L(X |µ, σ2))

dσ2 = − n
2σ2 +

1
2

(
1
σ2

)2 n∑
i=1

(xi − µ)2 = 0 (12)
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ML estimator for the normal distribution
Using (11), the sample mean is the ML estimator of the mean:

µ̂ML =
1
n

n∑
i=1

Xi (13)

The corresponding estimate is

µe =
1
n

n∑
i=1

xi = x̄ (14)

Using (12), the sample variance is the ML estimator of the variance:

σ̂2
ML =

1
n

n∑
i=1

(Xi − µ̂)2
ML (15)

The corresponding estimate is

σ2
e =

1
n

n∑
i=1

(xi − x̄)2 (16)
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Moments of the ML estimator of the mean of a normal

The ML estimator (as any estimator) is a random variable with

moments:

E(µ̂) = µ and Var(µ̂) =
σ2

n
(17)

E(µ̂) = E(
1
n

n∑
i=1

Xi ) =
1
n

n∑
i=1

E(Xi ) =
1
n

n∑
i=1

µ =
1
n

nµ = µ (18)

Var(µ̂) = E(µ̂− µ)2 = E

(
1
n

n∑
i=1

Xi − µ

)2

= E

 1
n2

(
n∑

i=1

(Xi − µ)

)2


=
1
n2 E

 n∑
i=1

n∑
i=j

(Xi − µ)(Xj − µ)

 =
n
n2σ

2 =
σ2

n
(19)

where E(.) = nσ2 when i = j and E(.) = 0 when i 6= j because of Xi

and Xj are independent.
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Subsection 2

The Score and the Fisher Information
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The Score of the likelihood function

The Score of the (log) likelihood l(X |θ) is the gradient (i.e. the vector

of partial derivatives), with respect to the parameters θ

S(θ,X ) =
∂ln(L(X |θ))

∂θ
=

1
L(X |θ)

∂L(X |θ)

∂θ
(20)

The score

I measures the sensitivity of the likelihood to changes of the

parameters for given X ;

I plays an important role in many applications of ML estimation.

Note that under the regularity conditions stated above, the first order

condition to obtain the ML estimator can be written as:

S(θ̂ML,X ) = 0 (21)
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The mean of the score
A useful property of the score is that its mean (integrating over X at

the true θ) is zero

EX (S(θ,X )) =

∫ +∞

−∞

∂ln(L(X |θ))

∂θ
L(X |θ)dX

=

∫ +∞

−∞

1
L(X |θ)

∂L(X |θ)

∂θ
L(X |θ)dX

=

∫ +∞

−∞

∂L(X |θ)

∂θ
dX

=
∂
(∫ +∞
−∞ L(X |θ)dX

)
∂θ

=
∂ (1)

∂θ
= 0

Thus the ML estimator of θ is the value θ̂ML that makes the realization

of the score equal to its expected value at the true θ (under regularity

conditions).
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An example: Binomial likelihood
Consider the likelihood of a binomial sample realisation (n = 1):

X ∼= qx (1− q)1−x = L(X |q) where x = {0,1}. (22)

The log likelihood is

l(X |q) = xln(q) + (1− x)ln(1− q) (23)

and the score is
∂l(X |q)

∂q
=

x
q
− 1− x

1− q
(24)

The expected value of the score is

E
(
∂l(X |q)

∂q

)
= E

(
x
q
− 1− x

1− q
|x = 1

)
q + E

(
x
q
− 1− x

1− q
|x = 0

)
(1− q)

=
1
q

q − 1
1− q

(1− q) = 0 (25)
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The variance of the score: Fisher Information
Since the mean of the score is zero, its variance can be written as

In(θ) = EX

(
(S(θ,X ))2

)
= EX

((
∂ln(L(X |θ))

∂θ

)2
)

=

∫ +∞

−∞

(
∂ln(L(x |θ))

∂θ

)2

L(X |θ)dX

= −
∫ +∞

−∞

(
∂2ln(L(x |θ))

∂θ2

)
L(X |θ)dX

= −EX

(
∂2ln(L(X |θ))

∂θ2

)
(26)

I it increases with the (absolute value of the) second derivative;

I it measures concavity, and thus how precise is ML estimation;

I the subscript n indicates that In(θ) is the Fisher Information for

the likelihood of a sample of n random variables.

I it is a k × k symmetric matrix for k parameters θ.
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Equivalence of the expressions for In(θ) in (26)

Using the simplified notation:

S(θ,X ) = lθ(θ,X ) (27)

we can demonstrate the second to third line step in previous slide:

EX

(
(lθ(θ,X ))2

)
= −EX (lθθ(θ,X )) (28)

Given ∫ +∞

−∞
el(θ,X)dX = 1 (29)

take the derivative with respect to θ on both sides∫ +∞

−∞
lθ(θ,X )el(θ,X)dX = 0 (30)

...
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Expressions for In(θ) in (26) (cont.)

and do it again on both sides∫ +∞

−∞

[
lθθ(θ,X ) + (lθ(θ,X ))2]el(θ,X)dX = 0 (31)

rearranging

−
∫ +∞

−∞
lθθ(θ,X )el(θ,X)dX =

∫ +∞

−∞
(lθ(θ,X ))2 el(θ,X)dX (32)

which proves the result

−EX (lθθ(θ,X )) = EX

(
(lθ(θ,X ))2

)
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Fisher Information for samples of size n and 1
The Fisher Information increases with the size of the sample.

A useful relationship links In(θ) to I1(θ).

In(θ) = nI1(θ) (33)

where I1(θ) is the Information computed for one generic observation

in the sample.

This distinction is important because, as we will show:

I 1
In(θ)

is the variance of an unbiased ML estimator which is also

the Cramer-Rao lower bound, i.e. the lowest possible variance of

an unbiased estimator when the sample has size n;

I 1
I1(θ)

is the variance of the (normal ) asymptotic distribution of the

ML estimator.
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Example: In(θ) for the exponential distribution
X ∼ fX (X |θ) = θe−θX (34)

The maximization problem is:

max
θ

L(X |θ) =
n∏

i=1

θe−θX (35)

max
θ

l(X |θ) = +nlnθ − θ
n∑

i=1

Xi (36)

which leads to the first order condition and ML estimator:

dl(X |θ)

dθ
= S(θ,X ) =

n
θ
−

n∑
i=1

Xi = 0 (37)

θ̂ML =
n∑n

i=1 Xi
(38)

Note: another case of biased ML estimator. What if we had specified

the exponential as X ∼ fX (X |λ) = 1
λe−

1
λ X ? (See problem set 1).
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Example: In(θ) for the exponential distribution (cont.)

The Score is

S(θ,X ) = lθ(θ,X ) =
n
θ
−

n∑
i=1

Xi (39)

The Information for the sample of size n can be computed as

In(θ) = −EX

(
∂2ln(L(X |θ))

∂θ2

)
=

n
θ2 (40)

while the Information for a generic sample observation Xi

I1(θ) = −EX

(
∂2ln(L(Xi |θ))

∂θ2

)
=

1
θ2 (41)

In part 3 of the slides, we will see that because of the CLT

AsyVar(θ̂ML) =
1
I1(θ)

= θ2 (42)
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Section 3

The method of Moments
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A convenient method for multiple parameters

The “Methods of Moments" constructs estimators using restrictions of

the population’s moments that should be satisfied also in the sample

(under random sampling).

Let x1, ...xn be a random sample of n draws from the random variable

X ∼ fX (x |θ1, ...θk ), where the parameters θ are unknown.

Suppose that k moments of X exist and let the jth moment be

E(X j ) = gj (θ1, ..., θk ) (43)

The MM estimates the k parameters as solutions of the system:

E(X j ) = g(θ1, ..., θk ) =

∫ ∞
−∞

X j fX (X |θ1, ...θk )dX =
1
n

n∑
i=1

x j
i

with one equation for each j = 1, ..., k .

28 / 37



Subsection 1

The MM estimator for the normal distribution
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The MM estimator for the normal distribution

fX (x |µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 (44)

The system that defines the MM estimators of µ and σ2 is:

E(X ) = g1(µ̂, σ̂2) =

∫ ∞
−∞

XfX (x |µ̂, σ̂2)dX =
1
n

n∑
i=1

xi

E(X 2) = g2(µ̂, σ̂2) =

∫ ∞
−∞

X 2fX (x |µ̂, σ̂2)dX =
1
n

n∑
i=1

x2
i

µ̂ =
1
n

n∑
i=1

Xi (45)

σ̂2 =
1
n

n∑
i=1

X 2
i −

(
1
n

n∑
i=1

Xi

)2

=
1
n

n∑
i=1

(Xi − µ̂)2 (46)

The MM and ML estimators coincide in this case.
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Subsection 2

A case in which the MM and ML estimators do not
coincide
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The Pareto distribution

Let X denote individual income. The Pareto’s Law claims that

P(X ≥ x) =
( ν

X

)θ
⇒ FX (X |θ, ν) = 1−

( ν
X

)θ
(47)

where ν is the (known) minimum income in the population and θ > 1.

Thus by differentiation the pdf is:

X ∼ fX (X |θ, ν) = θνθ
(

1
X

)θ+1

, X > ν; θ > 1 (48)
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The MM estimator for θ in the Pareto distribution

E(X ) =

∫ ∞
ν

Xθνθ
(

1
X

)θ+1

dX = θνθ
∫ ∞
ν

X−θdX =
θν

θ − 1
(49)

The Method of Moments estimates θ solving for θ̂ :

E(X ) =
θ̂ν

θ̂ − 1
=

1
n

n∑
i=1

(Xi ) = X̄ (50)

which gives the estimator

θ̂MM =
X̄

X̄ − ν
(51)

And given a random sample x1, ..., xn, an estimate

θMM
e =

x̄
x̄ − ν

(52)
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The ML estimator for θ in the Pareto distribution

The likelihood of the random sample xi , ..., xn is

L(X |θ, ν) =
n∏

i=1

θνθ
(

1
Xi

)θ+1

(53)

l(X |θ, ν) = lnL(X |θ, ν) = nlnθ + nθlnν − (θ + 1)
n∑

i=1

lnXi (54)

The first order condition is

n
θ

+ nlnν −
n∑

i=1

lnXi = 0 (55)

Hence the estimator and estimate are :

θ̂ML =
n

−nlnν +
∑n

i=1 lnXi
; θML

e =
n

−nlnν +
∑n

i=1 lnxi
(56)
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Section 4

Small sample distribution of an estimator
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An estimator is a random variable with a distribution

Estimators are random variables because they are transformations of

the sample draws which are random variables.

Distributions and related moments of an estimator can thus be

derived using:

I the rules for random variable transformation;

I the Moment Generating Functions;

I the Characteristic Function.

There are however cases in which the small sample distribution of an

estimator cannot be derived, while using asymptotic results one can

obtain the asymptotic distribution of the estimator.

This possibility is crucially useful in empirical analysis, as we will see.
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Example: distribution of the sample mean of a normal

Using the Moment Generating Function we can show that:

µ̂ ∼ φ
(
µ̂|µ, σ

2

n

)
(57)

where φ(.) is a normal distribution with mean µ and variance σ2

n .

Consider (for t ∈ R) the MGFs of Xi , S =
∑n

i=1 Xi and µ̂ = 1
n

∑n
i=1 Xi

MXi (t) = EXi

(
etXi
)

= eµt+σ2 t2
2 (58)

MS(t) =
n∏

i=1

(
eµt+σ2 t2

2

)
= enµt+n σ2 t2

2 (59)

Mµ̂(t) = MS(
1
n

t) = eµt+σ2 t2
n2 (60)

which is the MGF of a normal with mean µ and variance σ2

n .
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