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Why are properties of estimators interesting?

We choose between estimators comparing their properties.

It is useful to distinguish between:

I Finite sample properties that hold for a given sample size n.

I Unbiasedness
I Efficiency
I Sufficiency

I Asymptotic properties that hold when sample size goes to∞:
I Consistency
I Asymptotic unbiasedness
I Asymptotic efficiency
I Asymptotic normality

I Other properties (e.g. Invariance)
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Section 1

Finite sample properties
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Subsection 1

Unbiasedness
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Definition of Unbiasedness

An estimator θ̂ is unbiased for the parameter θ if

E(θ̂) = θ (1)

Example: for any distribution

X ∼ fX (X ) such that E(X ) = µ (2)

the sample mean is unbiased for the population mean

E(µ̂) = E

(
1
n

n∑
i=1

Xi

)
=

1
n

n∑
i=1

E(Xi ) =
1
n

nµ = µ (3)
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Example of unbiased MM and biased ML estimators

fX (x |θ) =
2X
θ2 for 0 ≤ X ≤ θ (4)

The MM estimator for θ is unbiased:

E(X |θ) =

∫ θ

0
X

2X
θ2 dX =

2
3
θ =

1
n

n∑
i=1

Xi = X̄ (5)

θ̂MM =
3
2

X̄ (6)

E(θ̂MM) = E
(

3
2

X̄
)

=
3
2

E
(
X̄
)

=
3
2

2
3
θ = θ (7)

The ML estimator is θ̂ML = Xmax and it is obviously biased, because θ

is the superior limit of the support.

But before choosing the MM estimator, in this case as in others, we

should also evaluate other desirable properties.
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Example: biased estimator of the variance of a normal

σ̂2
ML =

1
n

n∑
i=1

(Xi − X̄ )2 = σ̄2 (8)

The ML estimator (sample variance) is biased for the true variance

E
(
σ̂2

ML
)

= E

1
n

n∑
i=1

X 2
i −

(
1
n

n∑
i=1

X̄

)2
 =

1
n

(
n∑

i=1

E(X 2
i )− E(nX̄ 2)

)

=
1
n

(
n∑

i=1

(σ2 + µ2)− n
(
σ2

n
+ µ2

))
=

n − 1
n

σ2 (9)

An unbiased estimator is:

σ̂2 =
n

n − 1
σ̂2

ML =
n

n − 1
1
n

n∑
i=1

(Xi − X̄ )2 =
n

n − 1
σ̄2 (10)

8 / 56



Why unbiasedness may not be a desirable property

Suppose that S is an unbiased estimator for θ

E(S) = θ (11)

Let’s assume that the cost of mis-estimation is quadratic and equal to:

E(S − θ)2 = Var(S) (12)

Now consider a generic biased estimator R that can always be

written as

R = αS + (1− α)K (13)

where K is a constant.
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Possible undesirability of unbiasedness (cont.)

Also for R we can define the cost of mis-estimation as:

E (R − θ)2 = E ((R − E(R)) + (E(R)− θ))2 (14)

= E
(
(R − E(R))2)+ E

(
(E(R)− θ)2)+ E (2(R − E(R)(E(R)− θ))

= Var(R) + (E(R)− θ)2

= α2Var(S) + (αE(S)− (1− α)K − θ)2

= α2Var(S) + (1− α)2(K − θ)2

And we can always find a value of α such that

E(R − θ)2 < E(S − θ)2 = Var(S) (15)

Starting from an unbiased estimator I can construct a biased

estimator with smaller variance and mis-estimation error.
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Possible undesirability of unbiasedness (cont.)

It is easy to see graphically and intuitively that unbiasedness may not

be desirable if it comes at the cost of a higher estimation error.

Biased but more precise estimators may be preferable to unbiased

estimators

Moreover, within the class of unbiased estimators we need to define

other criteria to choose which estimator we prefer

We now turn to the property of Efficiency, which allows us to rank the

desirability of a set of unbiased estimators.
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Subsection 2

Efficiency
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Definition of Efficiency

Let θ̂1 and θ̂2 be two unbiased estimators of θ. If

Var(θ̂1) < Var(θ̂2) (16)

then θ̂1 is more efficient than θ̂2.

The relative efficiency or relative precision of θ̂1 with respect to θ̂2 is

Var(θ̂1)

Var(θ̂2)
(17)

Within the set of unbiased estimators we clearly prefer the most

efficient ones.
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Example: Efficiency of the sample mean
The variance of the sample mean using the entire sample of size n:

Var(µ̂) = Var

(
1
n

n∑
i=1

Xi

)
=
σ2

n
(18)

The variance of the sample mean using k < n observations is :

Var(ω̂) = Var

(
1
k

k∑
i=1

Xi

)
=
σ2

k
(19)

The sample mean using all observations is relatively more efficient:

Var(µ̂)

Var(ω̂)
=

k
n

(20)

In general, it is not a good idea to throw away sample observations

(but there are exceptions as we will see later).
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The Cramer-Rao lower bound
If θ̂ is unbiased for θ given a random sample of size n, then:

Var(θ̂) ≥ 1
In(θ)

(21)

=
1

EX (S(θ,X ))2 =
1

EX

(
∂l(X |θ)
∂θ

)2 =
−1

EX

(
∂2 l(X |θ)
∂θ2

)
where l(X |θ) = ln(L(X |θ)) is the log likelihood and the RHS of the

inequality is the Cramer-Rao lower bound

Using this theorem we can tell whether an estimator is a Minimum

Variance Unbiased Estimator .

Note the relationship between the Cramer-Rao lower bound and the

Fisher Information for a sample of size n.

An unbiased ML estimator reaches the Cramer-Rao lower bound also

in small sample.
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Regularity conditions for the Cramer-Rao lower bound

Some regularity conditions are needed for the Cramer-Rao lower

bound to exist

I f (X |θ) must be
I continuous
I with continuous first order and second order derivatives

I the set of values X for which f (X |θ) 6= 0 must not depend on θ,

i.e. the support of the underlying distribution cannot depend on

the parameter to be estimated.
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A different expression for the Cramer-Rao lower bound

It is easy to show that

EX

(
∂l(X |θ)

∂θ

)2

=
n∑

i=1

EX

(
∂lnf (X |θ)

∂θ

)2

= nEX

(
∂lnf (X |θ)

∂θ

)2

(22)

which explains the expression of the Cramer-Rao lower bound in

Larsen and Marx book.

See Casella and Berger or other equivalent texts for a proof of the

Cramer-Rao inequality.
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Example: the sample mean reaches the lower bound

X ∼ fX (x |µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 (23)

l(X |µ) = −n
2

ln(2π)− n
2

ln(2σ2)−
n∑

i=1

(Xi − µ)2

2σ2 (24)

∂l(X |µ)

∂µ
=

1
σ2

n∑
i=1

(Xi − µ) (25)

E
(
∂l(X |µ)

∂µ

)2

= E

 1
σ4

n∑
i=1

(Xi − µ)
n∑

j=1

(Xj − µ)

 (26)

which, because of the independence of sample observations is:

E
(
∂l(X |µ)

∂µ

)2

=
n
σ4σ

2 =
n
σ2 =

1
Var(µ̂)

=
1

Var
( 1

n

∑n
i=1 Xi

) (27)
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Subsection 3

Sufficiency
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Definitions of Sufficient Statistic

Given a random sample {X1, ...,Xn} drawn from a distribution fX (X |θ),

a statistic Ŝ = h(X1, ...,Xn) is sufficient for θ if the likelihood function

can be factorized as:

L(X |θ) =
n∏

i=1

fX (xi |θ) = g(Ŝ, θ)b(X1, ...,Xn) = (28)

This means that:

I to maximize the likelihood we just need to maximize g(Ŝ, θ);

I the ML estimator θ̂ML is just a function of the sufficient statistic Ŝ;

I Ŝ = h(X1, ...,Xn) summarizes all the useful information that the

sample can provide to estimate θ.
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The sample mean is sufficient for the Normal mean

L(X |µ, σ2) =
n∏

i=1

1√
2πσ2

e−
(xi−µ)2

2σ2

=
n∏

i=1

1√
2πσ2

e−
((xi−x̄)+(x̄−µ))2

2σ2 (29)

=
n∏

i=1

1√
2πσ2

e−
(xi−x̄)2+(x̄−µ)2+2(xi−x̄)(x̄−µ)

2σ2 (30)

=
n∏

i=1

1√
2πσ2

e−
(xi−x̄)2

2σ2

n∏
i=1

e−
(x̄−µ)2

2σ2 (31)

= b(x1, ..., xn|σ2)g(x̄ , µ|σ2) (32)

The sample mean x̄ contains all the information the sample can

provide to estimate the mean of the normal, for given variance.
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A MM estimator that is not sufficient

Recall the distribution

fX (x |θ) =
2X
θ2 for 0 ≤ X ≤ θ (33)

for which the MM estimator for θ

θMM =
3
2

X̄ (34)

is unbiased while the ML estimator

θ̂ML = Xmax (35)

is biased.
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A MM estimator that is not sufficient (cont.)

Consider two random samples of size n = 3:

S1 = {3,4,5} S2 = {1,3,8}

For both samples the MM estimate is

θ̂MM
e =

3
2

x̄ =
3
2

12
3

= 6 (36)

but the estimator, as well as the sample mean, are not sufficient: the

two samples convey different information on what θ might be:

I S1 is compatible with the possibility that θ = 5;

I this possibility is incompatible in S2.

Example 5.6.2 in Larsen and Marx shows that θ̂ML = Xmax is sufficient

as intuition would suggest.
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Sufficient statistics and MVUE (Blackwell theorem)

Given a random sample {X1, ...,Xn} drawn from fX (X |θ), if

I θ̂ is a MVUE and

I Ŝ = h(X1, ...,Xn) is a sufficient statistic for θ,

then θ̂ is function of Ŝ only and not directly of the sample

The converse is not true: not all functions of sufficient statistics are

MVUE.

But if we want an MVUE we can restrict our search to functions of

sufficient statistics
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Rao-Blackwell criterium for MVUE

An estimator θ̂ is a MVUE for θ if and only if for any other estimator θ̃

that is unbiased for θ the following equality holds

Cov(θ̂; θ̂ − θ̃) = 0 (37)
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Section 2

Asymptotic properties
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Why are asymptotic properties important

We obviously always work with finite samples, but:

1. we would feel unconfortable in using an estimator that had

undesirable properties in the hypothetical case in which the

sample size could go to∞.

2. A finite sample may be sufficiently “large” for asymptotic results

to hold with a very good approximation, even if its actual size is

effectively not so large.

3. Small sample properties are often difficult to characterize and

less attractive than asymptotic properties.

4. Asymptotic hypothesis testing is easy to define and perform,

while it may be more problematic in small sample.
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Notation for the asymptotic analysis of estimators

Asymptotics studies how the sequence of estimators that we obtain

for each sample size behaves when the sample size increases

towards∞.

Given an estimator θ̂ for the parameter θ, we denote its sequence,

when sample size n increases, as θ̂n.

Note that for each element θ̂n in the sequence, the estimator (the

recipe) is the same except that it is applied to a sample of different

(and actually larger) size.

As a companion to the pages that follow see also the Appendix (Part

11 of the slides): Some basic asymptotic results
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Subsection 1

Asymptotic unbiasedness
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Definition of Asymptotic Unbiasedness

θ̂n is asymptotically unbiased for θ if

lim
n→+∞

E(θ̂n) = θ (38)

For example, we know that the sample variance (ML estimator) is

biased for the population variance

E

(
1
n

n∑
i=1

(Xi − X̄ )2

)
=

n − 1
n

σ2 (39)

But it is asymptotically unbiased because:

lim
n→+∞

n − 1
n

σ2 = σ2 (40)
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Subsection 2

Consistency
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Definition of consistency

Let θ̂n denote a sequence of estimators for each sample size n.

θ̂n is consistent for θ if it converges in probability to θ, i.e. if:

Pr(|θ̂n − θ| < ε) > 1− δ for n→ +∞ and ∀ε > δ > 0 (41)

or equivalently if

lim
n→+∞

= Pr(|θ̂n − θ| > ε) = 0 ∀ε (42)
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Sufficient conditions for consistency

Using Chebyshev’s inequality we can write that for every estimator θ̂n,

Pr(|θ̂n − E(θ̂n)| > ε) <
Var(θ̂n)

ε2
(43)

A set of sufficient conditions for the Consistency of θ̂ is, therefore that:

E(θ̂) = θ → unbiasedness (44)

lim
n→+∞

Var(θ̂n) = 0 → the variance goes to zero when n increases.
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Consistency of the sample mean

We know already that the sample mean is unbiased for µ̂:

E(µ̂n) = E

(
1
n

n∑
i=1

Xi

)
=

1
n

n∑
i=1

E(Xi ) =
1
n

nµ = µ (45)

We also know that

Var(µ̂n) = E(µ̂− µ)2 = E

(
1
n

n∑
i=1

Xi − µ

)2

=
n
n2σ

2 =
σ2

n
(46)

and since

lim
n→+∞

Var(µ̂n) = lim
n→+∞

σ2

n
= 0 (47)

we can conclude, using Chebyshev inequality, that the sample mean

is consistent for the population mean.
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Subsection 3

Asymptotic Distribution of Estimators
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When small sample distributions are unknown ...

Estimators are transformations of the sample random variables .

Using the CLT and the Delta method, we can derive the parameters

of the asymptotic (normal) distribution of an estimator .

This can be done without the need of assumptions concerning the

underlying distribution of the random variables in the sample for

which the estimator is used.

We summarize here the most useful results without proofs (for which

see the reading list).

These results are crucial for hypothesis testing when small sample

distributions are unknown.
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Asymptotic Distribution of the ML estimator
Let θ̂ML

n be the ML estimator for a sample size n.

The asymptotic distribution of the ML estimator is

√
n(θ̂ML

n − θ)
d−→ Normal(0,

n
In(θ)

) (48)

or equivalently

√
n(θ̂ML

n − θ)
d−→ Normal(0,

1
I1(θ)

) (49)

where

In(θ) = EX

(
∂ln(L(x |θ))

∂θ

)2

= −EX

(
∂2ln(L(x |θ))

∂θ2

)
and In(θ) = nI1(θ)

The ML estimator is always asymptotically efficient
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An example: exponential distribution

Consider a random sample x1, x2,..., xn from the pdf

x ∼ f (x , θ) = θe−xθ with θ ≥ 0 and x > 0. (50)

where, using rules of integration, we can derive

E(X ) =
1
θ

and Var(X ) =
1
θ2 (51)

The likelihood function is:

L(x |θ) = θne−θ
∑i=n

i=1 xi = θne−θnx̄ (52)

and the log likelihood is

l(x |θ) = nlogθ − θ
n∑

i=1

xi (53)
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An example: exponential distribution (cont.)

The first order condition is

dl(X |θ)

dθ
= S(θ,X ) =

n
θ
−

n∑
i=1

Xi = 0 (54)

which can be solved to obtain the ML estimator is

θ̂ML =
n∑n

i=1 Xi
(55)

The S.O.C is also satisfied since:

d2l(X |θ)

(dθ)2 =
−n
θ2 < 0 (56)
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An example: exponential distribution (cont.)

The final ingredient to derive the asymptotic distribution is the Fisher

Information:

In(θ) = EX

(
∂ln(L(X |θ))

∂θ

)2

= −EX

(
∂2ln(L(X |θ))

∂θ2

)
= nI1(θ)

The computation is easy using the negative of the expectation of the

second derivative, which is a constant:

In(θ) =
n
θ2 (57)

I1(θ) =
1
θ2 (58)

(59)
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An example: exponential distribution (cont.)

We now have all the elements to state what is the asymptotic

distribution of the ML estimator

√
n(θ̂ML

n − θ)
d−→ Normal(0,

1
I1(θ)

) (60)

√
n(θ̂ML

n − θ)
d−→ Normal(0, θ2) (61)
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Asymptotic Distribution of the MM estimator

Let θ̂MM
n be the MM estimator for a sample size n, that is obtained by

solving equations of the form

n∑
i=1

g(xi , θ
MM
n ) = 0 (62)

with

I E(g(X , θ)) = 0

I g is twice continuously differentiable

then
√

n(θ̂MM
n − θ)

d−→ Normal(0,nV ) (63)

where

V = [E(gθ(X , θ))]−1[E(g(X , θ)2)][E(gθ(X , θ))]−1 (64)
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An example: exponential distribution (cont.)
Continuing the previous example, the MM estimator for θ solves:

(g(X , θ)) = (E(X )−
∑

Xi

n
) = (E(X )− X̄ ) = 0 (65)

To compute V we first need to derive

E(g(X , θ)2) = E((E(X )− X̄ )2) (66)

= E(E(X )2 + X̄ 2 − 2E(X )X̄ ) (67)

= E(X )2 + E(X̄ 2)− 2E(X )2 (68)

= E(X̄ 2)− E(X )2 (69)

=
Var(X )

n
=

1
nθ2 (70)

where in the last step we have used

E(X̄ 2) = Var(X̄ ) + E(X )2 =
Var(X )

n
+ E(X )2 (71)
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An example: exponential distribution (cont.)

To compute V we also need E(gθ(X , θ)). Since:

g(X , θ) = E(X )− X̄ =
1
θ
− X̄ (72)

then

E(gθ(X , θ)) = − 1
θ2 (73)

and

V = [E(gθ(X , θ))]−1[E(g(X , θ)2)][E(gθ(X , θ))]−1 (74)

=

(
− 1
θ2

)−1( 1
nθ2

)(
− 1
θ2

)−1

=
θ2

n
(75)
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An example: exponential distribution (cont.)

We now have all the elements to state what is the asymptotic

distribution of the MM estimator

√
n(θ̂MM

n − θ)
d−→ Normal(0,nV ) (76)

√
n(θ̂MM

n − θ)
d−→ Normal(0, θ2) (77)

Note that in this case the asymptotic distributions of the MM and ML

estimators coincide.

But this is not always the case as the next example shows.
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Asymptotics of MM and ML for the Pareto distribution

Recall the example in Part II of the slides.

Let X denote individual income. The Pareto’s Law claims that

P(X ≥ x) =
( ν

X

)θ
⇒ FX (X |θ, ν) = 1−

( ν
X

)θ
(78)

where ν is the (known) minimum income in the population and θ > 1.

Thus by differentiation the pdf is:

X ∼ fX (X |θ, ν) = θνθ
(

1
X

)θ+1

, X > ν; θ > 1 (79)
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The MM estimator for θ in the Pareto distribution

E(X ) =

∫ ∞
ν

Xθνθ
(

1
X

)θ+1

dX = θνθ
∫ ∞
ν

X−θdX =
θν

θ − 1
(80)

The Method of Moments estimates θ solving for θ̂ :

E(X ) =
θ̂ν

θ̂ − 1
=

1
n

n∑
i=1

(Xi ) = X̄ (81)

which gives the estimator

θ̂MM =
X̄

X̄ − ν
(82)

And given a random sample x1, ..., xn, an estimate

θMM
e =

x̄
x̄ − ν

(83)
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Asymptotic variance of the MM estimator

(g(x , θ))2 =

(
θν

θ − 1
− X̄

)2

(84)

E
(
(g(x , θ))2) = E(X̄ 2)−

(
θν

θ − 1

)2

=
Var(X )

n
=

1
n

ν2θ

(θ − 1)2(θ − 2)
(85)

where in the last line we have used

E(X̄ 2) = Var(X̄ ) + E(X )2 =
Var(X )

n
+

(
θν

θ − 1

)2

(86)

and the expression for the variance of a Pareto distribution which

holds for θ > 2.
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Asymptotic variance of the MM estimator (cont.)
We also need

E(gθ(X , θ)) =
−ν

(θ − 1)2 (87)

in order to derive

V = [E(gθ(X , θ))]−1[E(g(X , θ)2)][E(gθ(X , θ))]−1 (88)

=

(
(θ − 1)2

−ν

)(
1
n

ν2θ

(θ − 1)2(θ − 2)

)(
(θ − 1)2

−ν

)
=
θ2

n
(89)

=
(θ − 1)2θ

n(θ − 2)
(90)

And thus
√

n(θ̂MM
n − θ)

d−→ Normal(0,nV ) (91)

√
n(θ̂MM

n − θ)
d−→ Normal(0,

(θ − 1)2θ

(θ − 2)
) (92)
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The ML estimator for θ in the Pareto distribution

The likelihood of the random sample xi , ..., xn is

L(X |θ, ν) =
n∏

i=1

θνθ
(

1
Xi

)θ+1

(93)

l(X |θ, ν) = lnL(X |θ, ν) = nlnθ + nθlnν − (θ + 1)
n∑

i=1

lnXi (94)

The first order condition is

n
θ

+ nlnν −
n∑

i=1

lnXi = 0 (95)

Hence the estimator and estimate are :

θ̂ML =
n

−nlnν +
∑n

i=1 lnXi
; θML

e =
n

−nlnν +
∑n

i=1 lnxi
(96)
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Asymptotic variance of the ML estimator
The asymptotic variance is the inverse of the Fisher Information:

In(θ) = EX

(
∂ln(L(X |θ))

∂θ

)2

= −EX

(
∂2ln(L(x |θ))

∂θ2

)
= nI1(θ)

The computation is easy using the negative of the expectation of the

second derivative, which is a constant:

In(θ) =
n
θ2 (97)

I1(θ) =
1
θ2 (98)

and therefore

√
n(θ̂ML

n − θ)
d−→ Normal(0,

1
I1(θ)

) (99)

√
n(θ̂ML

n − θ)
d−→ Normal(0, θ2) (100)
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Comparison of ML and MM asymptotic variances

It is easy to check that

AsyVar(θ̂ML) = θ2 <
θ(θ − 1)2

θ − 2
= AsyVar(θ̂MM) (101)

The MM estimator of the parameter θ of the Pareto distribution is less

efficient asymptotically than the ML estimator.
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Subsection 4

Asymptotic efficiency
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Definition of Asymptotic Efficiency

θ̂n is asymptotically efficient for θ in a given class of estimators if for

any other estimator θ̃n in the same class:

AsyVar(θ̂n) ≤ AsyVar(θ̃n) (102)

where AsyVar denotes the variance of the asymptotic distribution

This is for example the case for the ML and MM estimators given that

1
I1(θ)

≤ nV (103)

Indeed we know that the ML estimator is asymptotically the most

efficient. Which is not always true for the MM estimator
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Section 3

Invariance of ML estimators
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Invariance: a useful property of the ML estimator

If

θ̂ML is the ML estimator for θ,

then, for any continuous function g(.),

g(θ̂ML) is the ML estimator for g(θ).

Note that:

I in general invariance does not preserve unbiasedness: if θ̂ML is

unbiased for θ, g(θ̂ML) may be biased for g(θ);

I if g(.) is linear then invariance preserves unbiasedness;

I invariance always preservers consistency, even for non linear

g(.) functions (see Continuous Mapping Theorem for

P-Convergence).
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