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Section 1

What a regression can do for us
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The problem

I an outcome variable y : e.g. labor earnings;

I a variable x which we consider as a possible determinant of y in

which we are interested: e.g. years of education;

I a variable e which describes all the other determinants of y that

we do not observe.

The general notation for the model that relates y , x and e is

y = f (x ,e) (1)

We are interested in the relationship between x and y in the

population, which we can study from two perspectives:

1. To what extent knowing x allows to “predict something" about y .

2. Whether ∆x “causes" ∆y given a proper definition of causality.
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Subsection 1

Regression and the CEF
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Regression and the conditional expectation function

Following Angrist and Pischke (2008) Regression is a useful tool

because of its link with the Conditional Expectation Function.

We can always decompose (1) in the following way:

y = E(y |x) + ε (2)

where E(y |x) is the CEF of y given x and ε = y − E(y |x) is:

I mean independent of x :

E(ε|x) = E(y − E(y |x)|x) = E(y |x)− E(y |x) = 0 (3)

I is uncorrelated with any function of x, i.e. for any h:

E(h(x)ε) = E(h(x)E(ε|x)) = 0 (4)
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An example of Conditional Expectation Function
Figure : The CEF of labor earnings given education in the US
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Interesting properties of the CEF

1. Let m(x) be any function of x . The CEF solves

E(y |x) = arg min
m(.)

E
[
(y −m(x))2] (5)

and minimizes the Mean Square Error of the prediction of Y

given X .

2. The variance of y can be decomposed in the variances of the

CEF and of ε.

V (y) = V (E(y |x)) + V (ε) (6)

= V (E(y |x)) + E(V (y |x))

Exercise: prove the two properties.
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Subsection 2

The Population Regression Function
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The Population Regression Function
We do not know the CEF but we can show that the Population

Regression Function (PRF) is a “good" approximation to the CEF:

yp = β0 + β1x (7)

such that β0 and β1 minimize the square of the residual distance

u = y − yp in the population, i.e. the “distance" between y and the

PRF line itself:

(β0, β1) = arg min
b0,b1

E
[
(y − b0 − b1x)2] (8)

The First Order conditions of problem 8 are:

E [x(y − b0 − b1x)] = 0 (9)

E [(y − b0 − b1x)] = 0
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An example of Population Regression function
Figure : The PRF of labor earnings given education in the US
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Figure 3.1.2 - A conditional expectation function and weighted regression line 
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Figure 3.1.2: Regression threads the CEF of average weekly wages given schooling 
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The parameters of the PRF

The solutions are:

β1 =
E [x(y − β0)]

E(x2)
=

Cov(y , x)

V (x)
(10)

β0 = E(y)− β1E(x) (11)

Note that by definition of β0 and β1:

y = yp + u = β0 + β1x + u (12)

and

E(xu) = E [x(y − β0 − β1x)] = 0 (13)

In words, the PRF is the linear function of x that makes the residuals

u uncorrelated with x in the population.
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Properties of the PRF

1. If the CEF is linear then the PRF is the CEF. This happens,
specifically:

I when y and x are jointly normally distributed;
I in a fully saturated model (to be defined below in the context of

multiple regression)

2. The PRF is the best linear predictor of y in the sense that it

minimizes the Mean Square Error of the prediction.

3. The PRF is the best linear approximation to the CEF in the sense

that it minimizes the Mean Square Error of the approximation.

Exercise: prove these properties.
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Parenthesis: an informative exercise

Take any dataset and assume that this is your entire population

Define the variables of interest y and x .

Estimate the linear regression of y on x .

Compute ȳ = E(y |x) and estimate the linear regression ȳ on x .

Compare the results of the two estimations and comment on your

findings.

In which sense the properties of the CEF and the PRF are relevant

for your findings?

Could this result be useful whenever data providers do not want to

release individual observations?
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What have we accomplished so far

If we are simply interested in predicting y given x it would be useful to

know the correspondent CEF because of its properties.

We do not know the CEF but the PRF is the best linear approximation

to the CEF and the best linear predictor of y given x .

If we had data for the entire population we could then use the PRF,

which we can characterize precisely, to predict y given x .

Usually, we have (at best) a random sample of the population.

We now have to show that the Sample Regression Function (SRF) is

a “good" estimate of the PRF according to some criteria.

This is an inference problem.
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Repetita juvant: again on the orthogonality condition
By saying that our goal is to estimate the PRF defined as:

yp = β0 + β1x (14)

where the parameters satisfy by construction:

(β0, β1) = arg min
b0,b1

E
[
(y − b0 − b1x)2] (15)

the orthogonality condition

E(xu) = E [x(y − β0 − β1x)] = 0 (16)

is not a necessary assumption for regression to make sense.

It follows instead from the definition β0 and β1 and ensures that:

I The OLS-MM estimator is by definition consistent for the PRF

I and unbiased in some important special cases.
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Subsection 3

Sample Regression Function and Population
Regression Function
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The starting point: a random sample

Now suppose that we have a random sample of the population

Definition
If {z1...zi ...zn} are independent draws from a population with density

function f(z,θ), then {z1...zi ...zn} is a random sample from the

population defined by f(z,θ). Note that each draw is a random

variable.

Exercise: make sure that you understand the meaning of random

sampling.
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The sample analog of the PRF

We want to know whether the sample analogs of

β1 =
Cov(y , x)

V (x)
and β0 = E(y)− β1E(x) (17)

which are:

β̂1 =
1
n

∑n
i=1(yi − ȳ)(xi − x̄)

1
n

∑n
i=1(xi − x̄)2

and β̂0 = ȳ − β̂1x̄ , (18)

where we denote sample averages as

ȳ =
1
n

n∑
i=1

yi and x̄ =
1
n

n∑
i=1

xi (19)

can be considered as “good" estimators of β1 and β0 under some

criteria to be defined.
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Why do we focus on the sample analog of β1 (or β0)?

Recall that an “estimator" is a function (a “recipe") of the sample

which originates an “estimate" (a “cake") when the actual draws (the

"ingredients") are combined in the way suggested by the estimator.

The “quality" of the estimate (the “cake") depends on the properties

of the estimator (the “recipe") and on the characteristics of the actual

sample (the “ingredients").

The “cakes" we want are the parameters β0 and β1 of the PRF which

is the fitted line that minimizes residuals from y in the population.

We want to know whether the slope β̂1 of the sample fitted line (SRF)

“approaches" the “cake we want", which is β1. (Same for β0)

We consider three justifications for using the SRF
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Section 2

Three equivalent ways to estimate the

Population Regression Function with the

Sample Regression Function
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Subsection 1

Method of Moments
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The “Method of Moment" justification of β̂0 and β̂1

The “Methods of Moments" constructs estimators using restrictions

imposed by population moments that should hold also in the sample

(under random sampling).

The definition of the PRF parameters implies that the following two

moment conditions should hold in the data

E(u) = E [y − β0 − β1x ] = 0 (20)

E(xu) = E [x(y − β0 − β1x)] = 0 (21)

If the sample is a scaled down but perfect image of the population (a

random sample), these two conditions should hold also in the sample.
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The moment conditions in the sample
The analogs of the population moment conditions in the sample are:

1
n

n∑
i=1

(yi − β̂0 − β̂1xi ) = 0 and
1
n

n∑
i=1

xi (yi − β̂0 − β̂1xi ) = 0 (22)

With simple algebra one can derive the MM estimators for β1 and β0:

β̂1 =
1
n

∑n
i=1(yi − ȳ)(xi − x̄)

1
n

∑n
i=1(xi − x̄)2

and β̂0 = ȳ − β̂1x̄ , (23)

Note an important necessary condition :

1
n

n∑
i=1

(xi − x̄)2 > 0 (24)

What does this mean for your research question and empirical work?
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Subsection 2

Ordinary Least Squares
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The “Least Squares" justification of β̂0 and β̂1

β̂0 and β̂1 can also be chosen to minimizes the sum of squared

residuals in the sample.

The PRF minimizes the sum of squared residual in the population,

and the SRF should do the same in the sample

The Ordinary Least Square estimators β̂0 and β̂1 are constructed as

(β̂0, β̂1) = arg min
b̂0,b̂1

n∑
i=1

[
(yi − b̂0 − b̂1xi )

2
]

(25)

It is easy to check that the FOCs of this problem are identical to (22):

n∑
i=1

(yi− β̂0− β̂1xi ) = 0 and
n∑

i=1

xi (yi− β̂0− β̂1xi ) = 0 (26)
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The OLS estimators
Since the OLS conditions (26) and the MM conditions (22) are the

same, they deliver the same estimators:

β̂1 =
1
n

∑n
i=1(yi − ȳ)(xi − x̄)

1
n

∑n
i=1(xi − x̄)2

and β̂0 = ȳ − β̂1x̄ , (27)

The second order conditions of problem (25) are satisfied.

The way to do it is to add and subtract β̂0 + β̂1xi within the squared

parentheses in the minimand (25) to get

n∑
i=1

[
(yi − β̂0 − β̂1xi ) + (β̂0 − b̂0) + (β̂1xi − b̂1xi )

]2
(28)

Developping the square one can show that the minimum occurs for

b̂0 = β̂0 and b̂1 = β̂1.
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Subsection 3

Maximum Likelihood
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The “Maximum Likelihood" justification of β̂0 and β̂1

There is a third way to justify the β̂0 and β̂1 estimators based on the

logic of Maximum Likelihood (ML).

This justification requires the assumption that y is distributed

normally.

Thanks to this distributional assumption, in addition to the MM and

OLS desirable properties that we will discuss below, β̂0 and β̂1

acquire also the properties of ML estimators.

We will discuss the additional properties of ML estimators later.

Now we just want to show that β̂0 and β̂1 can also be interpreted as

ML estimates, under the assumption of normality.
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The likelihood function

Consider the model

yi = β0 + β1xi + ui (29)

ui ∼ f (ui |0, σ2) =
1√

2πσ2
e− (ui )

2

2σ2 (30)

which implies

yi ∼ f (yi |0, σ2) =
1√

2πσ2
e− (yi−β0−β1xi )

2

2σ2 (31)

Given a random sample {yi} and {xi}, the likelihood function is:

L(y |x , β0, β1, σ
2) =

n∏
i=1

1√
2πσ2

e− (yi−β0−β1xi )
2

2σ2 (32)

i.e.: the probability of observing the sample given β0, β1 and σ2.
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The “Recipe" of maximum likelihood estimation

The ML estimator chooses β̂0, β̂1 and σ̂2 as the values of β0, β1 and

σ2 that maximize the likelihood, given the observed sample.

{β̂0, β̂1, σ̂
2} = argmax

β0,β1,σ2
L(y |x , β0, β1, σ

2) =
n∏

i=1

1√
2πσ2

e− (yi−β0−β1xi )
2

2σ2

(33)

Computations simplify if we maximize the log likelihood:

Log[L(y |x , β0, β1, σ
2)] =

n∑
i=1

log
[

1√
2πσ2

e− (yi−β0−β1xi )
2

2σ2

]
(34)

= −N
2

log(2π)− N
2

log(σ2)− 1
2

n∑
i=1

(yi − β0 − β1xi )
2

σ2
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First Order Conditions for β0 and β1

Maximization of the log likelihood with respect to β0 and β1 implies:

(β̂0, β̂1) = argmax
β0,β1

n∑
i=1

[
(yi − β0 − β1xi )

2] (35)

ML FOC, are identical to the contitions for MM and OLS :

n∑
i=1

(yi− β̂0− β̂1xi ) = 0 and
n∑

i=1

xi (yi− β̂0− β̂1xi ) = 0 (36)

Solving the FOC we get the same estimator:

β̂1 =
1
n

∑n
i=1(yi − ȳ)(xi − x̄)

1
n

∑n
i=1(xi − x̄)2

and β̂0 = ȳ − β̂1x̄ , (37)

Second Order Conditions can be checked as for OLS.
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