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Section 1

Algebraic and geometric properties of the

OLS estimators
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Properties concerning residuals
I The Sample Regression Function is the set of the fitted values

ŷi = β̂0 + β̂1xi (1)

I The estimated sample residuals û = y − ŷ satisfy:

n∑
i=1

ûi = 0 (2)

n∑
i=1

xi ûi = 0 (3)

n∑
i=1

(ŷi − ȳ)ûi = 0 (4)

I A geometric interpretation (see the figure drawn in class):

y = ŷ + û (5)
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A decomposition of the total variation of yi

The OLS-MM estimator decomposes the total variation of yi into a

component explained by xi and a residual unexplained component.

SST = Total Sum of Squares =
n∑

i=1

(yi − ȳ)2 (6)

SSE = Explained Sum of Squares =
n∑

i=1

(ŷi − ȳ)2 (7)

SSR = Residual Sum of Squares =
n∑

i=1

û2
i (8)

SST = SSE + SSR (9)

The proof is easy, developping the square in SST and using (4).
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Goodness of fit and the R-squared

Assuming variability in the sample (SST 6= 0), the R-Squared is

defined as

R2 =
SSE
SST

= 1− SSR
SST

(10)

which takes values between 0 and 1.

The R-squared measures the proportion of the total variation of y that

is explained by x .

It is also a measure of the goodness of fit of the model.

While a low R-squared may appear to be a “bad sign", we will show

later that x may still be a significant determinant of y even if the

R-squared is low.
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Section 2

Statistical properties of the OLS estimators
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Three desirable properties

One can think of several properties that an estimator (a “recipe")

should have in order to produce satisfactory estimates (“cakes").

At this stage we focus on three of these possible properties.

Note that the estimate is a random variable, because it is a function of

the sample observations which are random variables.

The desirable properties are:

1. Unbiasedness;

2. Consistency;

3. Efficiency.
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Subsection 1

Unbiasedness
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Are β̂0 and β̂1 unbiased for β0 and β1 ?

An estimator of population parameter is unbiased when its expected

value is equal to the population parameter.

The crucial population parameter of interest is the slope of the PRF.

We want to prove that:

E(β̂1|{xi}) ≡ E

(
1
n

∑n
i=1(yi − ȳ)(xi − x̄)

1
n

∑n
i=1(xi − x̄)2

|{xi}

)
=

Cov(y , x)

V (x)
≡ β

(11)

We need 4 assumptions, of which 3 have already been introduced.

Angrist and Pischke (2008) suggest that we should care more for

consistency, which (as we will see) does not require the fourth

assumption.
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The necessary assumptions for unbiasedness
I SLR 1: In the population, y is related to x and u as:

y = β0 + β1x + u (12)

I SLR 2: The n observations yi and xi are a random sample of the

population and the residual ui is defined by:

yi = β0 + β1xi + ui (13)

I SLR 3: The observations {x1, ..., xn} are not all equal

I SLR 4: The residual u is mean-independent of x :

E(u|x) = 0 (14)

Note that β0 and β1 in the PRF are defined by

E(ux) = 0 and E(u) = 0 (15)

which, as we will see, imply consistency of OLS-MM for the PRF.
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Proof of unbiasedness of the OLS estimator β̂1

Note first that SLR 3 is needed otherwise β̂1 would not exist.

It is then useful to consider the following general result which is easy

to verify for any random variables zi and wi :

n∑
i=1

(zi − z̄)(wi − w̄) =
n∑

i=1

zi (wi − w̄) =
n∑

i=1

(zi − z̄)wi (16)

Note that this holds also when zi = wi .

Using (16), the fact that
∑n

i=1(xi − x̄) = 0, and SLR 1 and SLR 2 to

substitute for yi , we can rewrite β̂1 as:

β̂1 =

∑n
i=1 yi (xi − x̄)∑n
i=1(xi − x̄)2

=

∑n
i=1(β0 + β1xi + ui )(xi − x̄)∑n

i=1(xi − x̄)2
(17)

= β1 +

∑n
i=1(ui )(xi − x̄)∑n

i=1(xi − x̄)2
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Proof of unbiasedness of the OLS estimator β̂1(cont.)

Substituting (17) in (11) and defining the Total Sum of Squared

deviation from the mean of x as

SSTx =
n∑

i=1

(xi − x̄)2 : (18)

we obtain:

E(β̂1|{xi}) = E
(
β1 +

∑n
i=1(ui )(xi − x̄)∑n

i=1(xi − x̄)2
|{xi}

)
(19)

= β1 +
1

SSTx

(
n∑

i=1

E [ui (xi − x̄)|{xi}]

)

= β1 +
1

SSTx

(
n∑

i=1

(xi − x̄)E(ui |{xi})

)
= β1

The last equality holds because of SLR 4 and random sampling.

13 / 35



Proof of unbiasedness of the OLS estimator β̂0

The proof of unbiasedness of β̂0 is straightforward. Taking the sample

average of (13) we get that

ȳ = β0 + β1x̄ + ū (20)

Then,

β̂0 = ȳ − β̂1x̄ = β0 + (β1 − β̂1)x̄ + ū (21)

And therefore:

E(β̂0|x) = β0 + E(β1 − β̂1)x̄ |x) + E(ū|x) (22)

= β0

because E(β̂1|x) = E(β1|x) and E(ū|x) = 0.
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The special case in which the CEF is linear
If y and x are jointly normally distributed:

E(y |x) = β0 + β1x (23)

the CEF is linear and coincides with the PRF; in this case, by

construction:

E(u|x) = E(y−β0−β1x |x) = E(y−E(y |x)|x) = E(y |x)−E(y |x) = 0

(24)

and OLS-MM is necessarily unbiased for the PRF (and the CEF).

Galton’s study of the intergenerational transmission of height hj , that

first used the word “Regression", made implicitly this assumption :

hs = α + γhf + ε (25)

It is also a standard in many traditional econometrics textbooks.
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The general case in which the CEF is non-linear
Consider again the education-earnings example (see next two pages)

The PRF is defined (i.e. positioned in the plane) so that by

construction

E(ux) = 0 and E(u) = 0

but inspection of the two figures clearly suggests that

E(u|x) 6= 0

When the CEF is non linear, the distance between y and the PRF

(which is u) must necessarily change with x .

In this case assuming E(u|x) = 0 implies sweeping under the carpet

the non linearity of the CEF.
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An example of Conditional Expectation Function
Figure : The CEF of labor earnings given education in the US
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An example of Population Regression function
Figure : The PRF of labor earnings given education in the US
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Figure 3.1.2 - A conditional expectation function and weighted regression line 
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Figure 3.1.2: Regression threads the CEF of average weekly wages given schooling 
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An instructive case in which E(ux) = 0 but E(u|x) 6= 0

Consider a binary outcome y (college enrollment) and a regressor x

(family income)

The PRF is

y = β0 + β1x + u (26)

and the population is described in this table:

x y u ux

0 0 0 - β0 0

0 1 1 - β0 0

1 1 1 - β0 - β1 1 - β0 - β1

2 1 1 - β0 - 2β1 2(1 - β0 - β1)
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The parameters of the PRF in this case
The parameters of the PRF are given by the solution of the two

moment conditions

E(u) =
−β0 + (1− β0) + (1− β0 − β1) + (1− β0 − β12)

4
= 0

E(ux) =
1− β0 − β1 + 2− 2β0 − 4β1

4
= 0 (27)

and the solutions are

β0 =
6
11

(28)

β1 =
3
11

(29)

The PRF implies that the residuals are

u = y − 6
11
− 3

11
x (30)
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The conditional expectation of u given x in this case
E(u|x = 0) = 1− 2β0 = − 1

11
(31)

E(u|x = 1) = 1− β0 − β1 = +
2
11

(32)

E(u|x = 2) = 1− β0 − 2β1 = − 1
11

(33)

More generally, every Limited Dependent Variable model with non

binary regressors implies that:

I the CEF is non linear, but the PRF satisfies the conditions

E(ux) = 0 and E(u) = 0

I The OLS-MM estimator is biased for the PRF because

E(u|x) 6= 0

I but we now prove that is nevertheless consistent for the PRF.
21 / 35



Subsection 2

Consistency
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Are β̂0 and β̂1 consistent for β0 and β1

An estimator of a population parameter is consistent when the

estimates it produces can be made arbitrarily close to the population

parameter by increasing the sample size.

Formally β̂1 converges in probability to β1:

lim
n→+∞

Pr(|β̂1 − β1| > ε) = 0 ∀ε (34)

Equivalent notational forms to denote convergence in probability are

β̂1
p−→ β1 (35)

Plim
n→+∞

β̂1 = β1 (36)

and similarly for β̂0.
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Proof of Consistency of the OLS estimator

Using:

I the Law of Large numbers

I the Continuous Mapping Theorem for P-Convergence

I E(UX ) = E [x(y − β0 − β1x)] which defines the PRF:

plim β̂1 = plim
(
β1 +

∑n
i=1(ui )(xi − x̄)∑n

i=1(xi − x̄)2

)
(37)

= β1 +
plim

(∑n
i=1(ui )(xi − x̄)

)
plim

(∑n
i=1(xi − x̄)2

)
= β1 +

Cov(x ,u)

Var(x)
= β1
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Comment on the proof of Consistency
Note that

E(U|X ) = 0 ⇒ E(UX ) = 0 (38)

but the converse is not true.

Therefore, precisely because of how we have defined the PRF,

I the OLS estimator is consistent for the PRF

I even if it may be biased for the PRF,

I and it will be biased in the likely and general case in which the

CEF is non linear.

However, as we will see below in the lecture on causality:

I the fact that OLS is consistent for the PRF

I does not mean that the PRF has a causal interpretation;

I therefore OLS may be inconsistent for the causal effect X on Y .
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Subsection 3

Efficiency
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Are β̂0 and β̂1 efficient estimators for β0 and β1 ?

Remember that since the estimator is a function of random variables

(the sample observations), it is itself a random variable.

We have seen that under assumptions SLR 1 - SLR 4,

E(β̂1|x) = β1 and E(β̂0|x) = β0 (39)

We know want to find

V (β̂1|x) and V (β̂0|x) (40)

The simplest context in which these variances can be computed is

the one of homoscedasticity
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A 5th assumption: Homoscedasticity

SLR 5: The error u is said to be homoscedastic if it has the same

variance given any value of the explanatory variable x :

V (u|x) = σ2 (41)

It is important to realize that SLR 5:

I is not needed to prove unbiasedness

I we introduce it just to simplify calculations, but we will later

remove it because it is unlikely to hold in most applications.

What we can say at this stage is that under SLR1 - SLR5:

E(y |x) = β0 + β1x and V (y |x) = σ2 (42)

which is the situation described in Figure 2.8 of Wooldridge.
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The variance of β̂1 under homoscedasticity
Using (17) we can express the variance of β̂1 as

V (β̂1|x) = V
(
β1 +

∑n
i=1(ui )(xi − x̄)∑n

i=1(xi − x̄)2
|x
)

(β1 is a constant) (43)

=

(
1∑n

i=1(xi − x̄)2

)2

V

(
n∑

i=1

(ui )(xi − x̄)|x

)
(conditioning on x)

=

(
1∑n

i=1(xi − x̄)2

)2 n∑
i=1

(xi − x̄)2V (ui |x) (indep., random i)

=

(
1∑n

i=1(xi − x̄)2

)
σ2 (homoschedasticity)

=
σ2

SSTx

The variance of β̂1 is smaller, the smaller is the variance of the

unobserved component and the larger is the sample variance x .
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How can we estimate σ2

We have the sample SSTx , but we need an estimate of σ2. Consider:

yi = β0 + β1xi + ui (44)

yi = β̂0 + β̂1xi + ûi (45)

ûi − ui = −(β̂0 − β0)− (β̂1 − β1)xi (46)

The estimated residual ûi is in general different from the unobservable

component ui . Taking the sample average of (46) we get:

ū = (β̂0 − β0) + (β̂1 − β1)x̄ (47)

Note that the sample average of ûi is zero. Adding 47 to 46:

ûi = (ui − ū)− (β̂1 − β1)(xi − x̄) (48)

Since σ2 = E(u2
i ) it would seem natural to construct an estimator σ̂2

building around
∑n

i=1(û2
i ).
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An unbiased estimator for σ2

Using (48):

E(
n∑

i=1

û2
i |X ) = E [

n∑
i=1

(ui − ū)2|X ] + E [(β̂1 − β1)2
n∑

i=1

(xi − x̄)2|X ]

− 2E [(β̂1 − β1)
n∑

i=1

ui (xi − x̄)|X ]

= (n − 1)σ2 + σ2 − 2σ2 = (n − 2)σ2 (49)

Hence and unbiased estimator of σ2 is:

σ̂ =
1

n − 2

n∑
i=1

û2
i (50)

There are only n − 2 degrees of freedom in the OLS residuals since

n∑
i=1

ûi = 0 and
n∑

i=1

xi ûi = 0 (51)
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Steps to derive the last line in equation 49

I E [
∑n

i=1(ui − ū)2] = (n − 1)σ2

where note that the RHS has n − 1 (and not n) because

otherwise the argument of the expectation would be biased (see

for analogy the example of the biased estimator of the variance

of a normal in part 3 of the slides).

I E [(β̂1 − β1)2∑n
i=1(xi − x̄)2|X ] = V (β̂1|X )SSTX = σ2

given equation (43).

I E [(β̂1 − β1)
∑n

i=1 ui (xi − x̄)|X ] = E [(β̂1 − β1)2SSTx |X ] =

V (β̂1|X )SSTX = σ2

using equation (17) and again equation (43).
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Asymptotic variance

Using

I the Central Limit Theorem

I The Delta Method

we can say that:

√
n(β̂1 − β1)

d−→ Normal
(

0,
σ2

Var(x)

)
(52)

We will come back to a proof of this result in the context of the

Multiple Regression Function.
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Subsection 4

The Gauss-Markov Theorem
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The Gauss-Markov Theorem

Under the assumptions:

SLR 1: In the population y is a linear function of x .

SLR 2: yi and xi are a random sample of size n.

SLR 3: The observations {x1, ..., xn} are not all equal.

SLR 4: The residual u is mean-independent of x .

SLR 5: Homoschedastic of u (needed for efficiency)

The OLS is the Best Linear Unbiased Estimators (BLUE), i.e. it has

the smallest variance in the class of linear unbiased estimators for

y = β0 + β1x + u (53)

Proof for the more general case of multiple regression.
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