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Section 1

A brief introduction to the problem of

causality
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Causality, the PRF and the CEF

So far we have characterized the Population Regression Function as

a linear approximation to the Conditional Expectation Function.

OLS-MM is an estimator of the PRF with some desirable properties.

Given a specific sample, the Sample Regression Function estimated

with OLS-MM is a “good" estimate of the PRF-CEF.

It is not an estimate of the causal effect of x on y unless the

CEF-PRF itself can be interpreted in a causal sense.

We want to briefly introduce what it means to give a causal

interpretation to the PRF-CEF and what this implies for the

regression.
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Examples of causal question

I Does smoking cause lung cancer?

I Does aspirin reduce the risk of heart attacks?

I Does an additional year of schooling increase future earnings?

I Are temporary jobs a stepping stone to permanent employment?

I Does EPL increase unemployment?

The answers to these questions (and to many others which affect our

daily life) involve the identification and measurement of causal links:

an old problem in philosophy and statistics.
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The counterfactual definition of causality
Consider the simple case of a binary variable X and an outcome Y .

To give a precise meaning to the sentence

X causes Y

we need to define counterfactuals (or potential ouccomes).

This requires assuming that:

I the outcome Y1 that occurs when X = 1 and

I the outcome Y0 that occurs when X = 0

are both well defined even if we can observe only one of them.

Yobs = Y1X + Y0(1− X ) (1)

Within this framework, the causal effect of X on Y , is

τ = Y1 − Y0 (2)
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Fundamental problem of causal inference

It is impossible to observe for the same unit i the values xi = 1 and

xi = 0 as well as the values Y1 and Y0 and, therefore, it is impossible

to observe the causal effect of X on Y for a specific unit i .

Causal analysis, in different disciplines, tries to solve this problem.

Statistics looks for solutions based on

I randomized experiments when possible;

I alternative strategies that try to approximate randomized

experiments.

to identify causal effects for groups of units in the population.

See Holland (1986) for a discussion of alternative approaches to

causality.
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Statistical causal effects

I Average treatment effect

ATE = E(Y1)− E(Y0) (3)

I Average effect of treatment on the treated

ATT = E(Y1|X = 1)− E(Y0|X = 1) (4)

I Average effect of treatment on the non treated

ATNT = E(Y1|X = 0)− E(Y0|X = 0) (5)
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Why randomized experiments solve the problem

Given two random samples C and T from the population:

E(Y0|C) = E(Y0|T ) = E(Y0) (6)

and

E(Y1|C) = E(Y1|T ) = E(Y1). (7)

The:

E(τ) = E(Y1)− E(Y0) = E(Y1|T )− E(Y0|C) (8)

Randomization solves the Fundamental Problem of Causal Inference

because it allows to use the control units C as an image of what

would happen to the treated units T in the counterfactual situation of

no treatment, and vice-versa.
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Section 2

What is needed for a “causal" interpretation

of the PRF
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Definition of counterfactual wages and education
For each subject there exist two “potential wage levels" depending on

going to college (high education) or not (low education):

yh = µh + ν (9)

yl = µl + ν

where E(ν) = 0.

The “causal effect" of college attendance on earnings for a subject

τ = yh − yl = µh − µl (10)

is not identified because only one potential outcome is observable.

Let x = 1 denote college attendance while x = 0 indicates lower

education. The observed wage level y is given by:

y = yl(1− x) + yhx (11)
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The Population Regression Function
We want to know if and under what conditions the parameter β1

y = β0 + β1x + u (12)

is the average causal effect of college on wages in the population.

Substituting 9 in 11 the causal relationship between x and y is:

y = µl + (µh − µl)x + ν (13)

which looks promising, but we need to show that, given how we

defined β1 in the PRF,

(β0, β1) = arg min
b0,b1

E
[
(y − b0 − b1x)2] (14)

then

β1 = µh − µl (15)
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A useful result: regression when x is a dummy
We have seen that the solution to problem 14 is

β1 =
Cov(y , x)

V (x)
=

E(yx)− E(y)E(x)
E(x2)− (E(x))2 (16)

Note that β1 is a population parameter (not an estimator).

Since x is a dummy, V (x) = p(1− p) where p = Pr(x = 1), while the

numerator of 16 is:

E(yx)− E(y)E(x) = E(y |x = 1)p − pE(y) (17)

= E(y |x = 1)p − p[E(y |x = 1)p + E(y |x = 0)(1− p)]

= E(y |x = 1)p(1− p)− E(y |x = 0)p(1− p)

and therefore

β1 =
Cov(y , x)

V (x)
= E(y |x = 1)− E(y |x = 0) (18)

Sample averages in the RHS of 18 give the “Wald estimator".
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The Selection Bias

Substituting 13 in 18, we get

β1 = E(y |x = 1)− E(y |x = 0) (19)

= E(µh + ν|x = 1)− E(µl + ν|x = 0)

= µh − µl + [E(ν|x = 1)− E(ν|x = 0)]

= τ + [E(ν|x = 1)− E(ν|x = 0)]

where the term in brackets is called Selection Bias (SB)

SB captures the (pre-treatment) unobservable differences between

college graduates and other subjects, which are not attributable to

college attendance.
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Is β1 a causal parameter?

The PRF and β1 have a causal interpretation only if the Selection

Bias is zero,

[E(ν|x = 1)− E(ν|x = 0)] = 0 (20)

SB is zero only if the “treated" and the “non-treated" have on average

the same unobservables in the hypothetical case in which both were

treated or not.

This can happen only :

I in a randomized controlled experiment;

I when for other reasons not controlled by the researcher,

exposure to treatment is random in the population.
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Generalization when x is not dummy
In the more general situation in which x is not a dummy

β1 =
Cov(y , x)

V (x)
=

Cov [(µl + τx + ν), x ]
V (x)

(21)

= τ +
Cov(ν, x)

V (x)

and the PRF is causal when, in the population, the treatment x is

uncorrelated with unobservable pre-treatment characteristics ν.

The interpretation is the same as in the “binary x" case.

Causality is a feature of the relationship between x and y , and can be

identified only when subjects are randomly exposed to x .

When random exposure of subjects to x occurs in the population of

interest, we can interpret the PRF as a causal relationship.
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Another way to put it
Compare:

y = β0 + β1x + u (22)

y = µl + τx + ν (23)

We know that by definition β0 and β1 in 22 imply

Cov(x ,u) = E(xu) = 0 (24)

but nothing guarantees that the u which derive from the definition of

the PRF parameters and that satisfies 24, coincide with ν.

Only when x and ν are such that

Cov(x , ν) = E(xν) = 0 (25)

i.e. we have random exposure of subjects to x in the population, then

ν = u and β1 = τ (26)

and the PRF can be interpreted causally.
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Consistency and causality

Following the Angrist Pischke approach, the OLS estimator is

consistent for the PRF by definition of the population parameters it

aims to estimate because

Cov(x ,u) = E(xu) = 0 (27)

follows from the definition of β1 and β0 and is not an assumption.

But “consistency" simply means that the SRF can be made arbitrarily

close to the PRF by increasing the sample size.
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Consistency and causality (cont)
Thus, consistency of OLS implies nothing about causality. Only if

Cov(x , ν) = E(xν) = 0 (28)

the PRF is a causal relationship, in which case the OLS is consistent

for the causal effect of x on y in the population.

Note however that even when the PRF has no causal interpretation:

I the PRF it is still the best linear approximation to the CEF

I the PRF it is still the best linear approximation to the unkown

relationship between x and y .

Regression is therefore a useful statistical tool also when it cannot be

given a causal interpretation.
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To summmarize this brief introduction to causality
I The causal effect of x and y requires comparing counterfactuals

and cannot be identified for a specific subject.

I If we have a population in which exposure to x is random, then

the PRF identifies the average causal effect of x on y .

I But even if exposure to x is not random, we are still interested in

the PRF, which is the MMSE approximation to the unknown CEF.

I The PRF defines its parameters in a way such that the

population residuals are uncorrelated with x , but this does not

ensure a causal interpretation.

I However this definition of the PRF guarantees that we can say

something about the PRF (and the CEF) with a random sample.

I The OLS estimator is the BLUE for the PRF parameters if the

SLR 1 - SLR 5 assumptions of Gauss Markov hold.

I SLR 1 - SLR 3 are enough for OLS to be consistent for the PRF.
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