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Section 1

A brief introduction to the problem of
causality
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Causality, the PRF and the CEF

So far we have characterized the Population Regression Function as
a linear approximation to the Conditional Expectation Function.

OLS-MM is an estimator of the PRF with some desirable properties.

Given a specific sample, the Sample Regression Function estimated
with OLS-MM is a “good" estimate of the PRF-CEF.

It is not an estimate of the causal effect of x on y unless the
CEF-PRF itself can be interpreted in a causal sense.

We want to briefly introduce what it means to give a causal
interpretation to the PRF-CEF and what this implies for the
regression.



Examples of causal question

v

Does smoking cause lung cancer?

v

Does aspirin reduce the risk of heart attacks?

v

Does an additional year of schooling increase future earnings?

v

Are temporary jobs a stepping stone to permanent employment?

v

Does EPL increase unemployment?

The answers to these questions (and to many others which affect our
daily life) involve the identification and measurement of causal links:
an old problem in philosophy and statistics.
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The counterfactual definition of causality
Consider the simple case of a binary variable X and an outcome Y.

To give a precise meaning to the sentence
X causes Y
we need to define counterfactuals (or potential ouccomes).

This requires assuming that:
» the outcome Y; that occurs when X = 1 and
» the outcome Y; that occurs when X =0

are both well defined even if we can observe only one of them.

Yobs = YiX + Yo(1 — X) (1)

Within this framework, the causal effect of X on Y, is

T = Y17Y0 (2)



Fundamental problem of causal inference

It is impossible to observe for the same unit i the values x; =1 and
X; = 0 as well as the values Yy and Yy and, therefore, it is impossible
to observe the causal effect of X on Y for a specific unit i.

Causal analysis, in different disciplines, tries to solve this problem.

Statistics looks for solutions based on
» randomized experiments when possible;

» alternative strategies that try to approximate randomized
experiments.

to identify causal effects for groups of units in the population.

See Holland (1986) for a discussion of alternative approaches to
causality.
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Statistical causal effects

» Average treatment effect

ATE = E(Y) - E(Yy)

» Average effect of treatment on the treated

ATT = E(Y41X = 1) — E(Yo|X = 1)

» Average effect of treatment on the non treated

ATNT = E(Y;|X = 0) — E(Yo|X = 0)



Why randomized experiments solve the problem

Given two random samples C and T from the population:

E(Yo|C) = E(Yo|T) = E(Yo) (6)

and
E(Y4|C) = E(Y4|T) = E(V1). (7)

The:
E(r) = E(Y1) — E(Yo) = E(Y1]T) — E(Y5[C) 8)

Randomization solves the Fundamental Problem of Causal Inference
because it allows to use the control units C as an image of what
would happen to the treated units T in the counterfactual situation of
no treatment, and vice-versa.



Section 2

What is needed for a “causal” interpretation
of the PRF
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Definition of counterfactual wages and education
For each subject there exist two “potential wage levels" depending on
going to college (high education) or not (low education):

Yo = pntv 9)
o= m+v
where E(v) = 0.
The “causal effect" of college attendance on earnings for a subject
T=Yh—YI=ph— (10)
is not identified because only one potential outcome is observable.

Let x = 1 denote college attendance while x = 0 indicates lower
education. The observed wage level y is given by:

y=yi(1 = Xx)+ ynx (11)
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The Population Regression Function
We want to know if and under what conditions the parameter g4

Yy=00+Bix+u (12)

is the average causal effect of college on wages in the population.

Substituting 9 in 11 the causal relationship between x and y is:
Y=+ (pn — )X +v (13)

which looks promising, but we need to show that, given how we
defined 3, in the PRF,

(50aﬂ1)Zafgll;?iQE[(y_bo_mx)z] (14)

then
B1 = pn — (15)
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A useful result: regression when x is a dummy
We have seen that the solution to problem 14 is

_ Cov(y,x) E(yx)— E(y)E(x) (16)
V(X)) E(x®)—(E(x))?

Note that 3y is a population parameter (not an estimator).

B

Since x is a dummy, V(x) = p(1 — p) where p = Pr(x = 1), while the
numerator of 16 is:

E(yx) - E(y)E(x) = E(ylx=1)p—pE(y) (17)
= E(ylx=1)p—plE(y|x =1)p+ E(y|x =0)(1 — p)]
= E(ylx=1)p(1-p)— E(ylx=0)p(1 —p)
and therefore
g CONX) 1) Egyix—
1 V(x) yIx=1)—-E(y|x=0) (18)

Sample averages in the RHS of 18 give the “Wald estimator".
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The Selection Bias

Substituting 13 in 18, we get

B E(ylx=1) - E(y|x =0) (19)
E(pn+vix =1) = E(u + v|x = 0)
ph — i+ [E(vix = 1) = E(v|x = 0)]

T+ [E(v|]x =1) — E(v|x = 0)]

where the term in brackets is called Selection Bias (SB)

SB captures the (pre-treatment) unobservable differences between
college graduates and other subjects, which are not attributable to
college attendance.
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Is 51 a causal parameter?

The PRF and 1 have a causal interpretation only if the Selection

Bias is zero,
[E(v]x=1)—E(v|x=0)]=0 (20)

SB is zero only if the “treated" and the “non-treated" have on average
the same unobservables in the hypothetical case in which both were
treated or not.

This can happen only :
» in a randomized controlled experiment;

» when for other reasons not controlled by the researcher,
exposure to treatment is random in the population.
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Generalization when x is not dummy

In the more general situation in which x is not a dummy

Cov(y,x)  Cov[(u +7x+v),X]
V(x) V(x)

Cov(v, x)
V(x)

B =
= T+
and the PRF is causal when, in the population, the treatment x is
uncorrelated with unobservable pre-treatment characteristics v.
The interpretation is the same as in the “binary x" case.

Causality is a feature of the relationship between x and y, and can be
identified only when subjects are randomly exposed to x.

When random exposure of subjects to x occurs in the population of
interest, we can interpret the PRF as a causal relationship.

16/20



Another way to put it
Compare:

y=PFo+Bix+u (22)
y=pm+rx+v (28)

We know that by definition 5y and 3¢ in 22 imply
Cov(x,u) = E(xu)=0 (24)

but nothing guarantees that the u which derive from the definition of
the PRF parameters and that satisfies 24, coincide with v.

Only when x and v are such that
Cov(x,v) = E(xv) =0 (25)
i.e. we have random exposure of subjects to x in the population, then
v=u and B1=rT1 (26)

and the PRF can be interpreted causally.
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Consistency and causality

Following the Angrist Pischke approach, the OLS estimator is
consistent for the PRF by definition of the population parameters it
aims to estimate because

Cov(x,u) = E(xu)=0 (27)
follows from the definition of 8; and Sy and is not an assumption.

But “consistency" simply means that the SRF can be made arbitrarily
close to the PRF by increasing the sample size.
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Consistency and causality (cont)
Thus, consistency of OLS implies nothing about causality. Only if
Cov(x,v) = E(xv)=0 (28)

the PRF is a causal relationship, in which case the OLS is consistent
for the causal effect of x on y in the population.

Note however that even when the PRF has no causal interpretation:
» the PREF it is still the best linear approximation to the CEF

» the PRF it is still the best linear approximation to the unkown
relationship between x and y.

Regression is therefore a useful statistical tool also when it cannot be
given a causal interpretation.
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To summmarize this brief introduction to causality
» The causal effect of x and y requires comparing counterfactuals

and cannot be identified for a specific subject.

» If we have a population in which exposure to x is random, then
the PRF identifies the average causal effect of x on y.

» But even if exposure to x is not random, we are still interested in
the PRF, which is the MMSE approximation to the unknown CEF.

» The PRF defines its parameters in a way such that the
population residuals are uncorrelated with x, but this does not
ensure a causal interpretation.

» However this definition of the PRF guarantees that we can say
something about the PRF (and the CEF) with a random sample.

» The OLS estimator is the BLUE for the PRF parameters if the
SLR 1 - SLR 5 assumptions of Gauss Markov hold.

» SLR 1 - SLR 3 are enough for OLS to be consistent for the PRF.
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