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Section 1

Finite sample properties
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Subsection 1

Unbiasedness
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Unbiasedness of the OLS estimator of the PMRF

The proof of unbiasedness is similar to the simple regression case;

β̂ = (X ′X )−1X ′Y (1)

= (X ′X )−1X ′(Xβ + U)

= (X ′X )−1X ′Xβ + (X ′X )−1X ′U

= β + (X ′X )−1X ′U
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Unbiasedness of the OLS estimator (cont.)

Taking the expectation

E(β̂|X ) = β + (X ′X )−1X ′E(U|X ) = β (2)

which follows from the assumption:

I MLR 4: Conditioning on the entire X each ui has zero mean

E(U|X ) = 0 (3)

The considerations we made about this assumption for the simple

regression case hold here as well.
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Omitted variable bias and irrelevant regressors

Suppose that we have omitted a variable Z which we think should be

included for the CIA to hold. Thus:

U = Zγ + V (4)

The expected value of the estimator for β is:

E(β̂|X ) = β + (X ′X )−1X ′E [U|X ] (5)

= β + (X ′X )−1X ′E [Z |X ]γ + (X ′X )−1X ′E [V |X ]

= β + (X ′X )−1X ′E [Z |X ]γ
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Omitted variable bias and irrelevant regressors (cont.)

The omission of Z generates a bias if

I E(Z |X ) 6= 0 ;

I Z has a non-zero effect γ on the outcome.

The sign of the bias is easy to determine if X and Z include only one

variable each. Not obvious otherwise.
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Subsection 2

Good and bad habits concerning control variables
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Are control variables always useful?

It may not be a good idea to add controls, specifically if they are

themselves causally affected by the main variable of interest.

We should control for omitted variables, when the CIA holds:

Y = Xβ + Zγ + U (6)

and if we run

Y = Xβ + V (7)

we get a biased and inconsistent estimate

E(β̂) = β + (X ′X )−1E [X ′Z ]γ (8)

In this case, If we observe Z we should include it.
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Controlling to increase precision

It may be a good idea to include Z even if E [X ′Z ] = 0, if the goal is

not to avoid a bias but to increase efficiency.

Consider a random experiment in which a training program X is

randomly assigned to estimate its effect on future earnings Y . The

causal PRF is

Y = Xβ + U (9)

Consider a set of predetermined demografic characteristics D, which

by random assignment of X are orthogonal to X , but have a causal

effect on Y .
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Controlling to increase precision (cont.)

If we run the PMRF

Y = Xβ + Dγ + V (10)

the OLS estimator for β is:

β̂ = (X ′MX )−1X ′MY (11)

where M = I − D(D′D)−1D′. Note that MX = X because

D(D′D)−1D′X = 0: D and X are orthogonal. But

σ2
U = Var(U) = γ2Var(D) + Var(V ) > Var(V ) = σ2

V

and therefore β is estimated more precisely using 10.
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A first case of misleading control variable
Now suppose that D is instead the occupation chosen by the subject

after training:

I D = 1 white collar

I D = 0 blue collar

The training program

I X = 1 trained

I X = 0 not trained

increases the chance of a white collar occupation.

Note that X is randomly assigned in the population, but not within the

occupational group!
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A first case of misleading control variable (cont.)

If we estimate

Y = Xβ + U (12)

we get an unbiased and consistent estimate of β which is the overall

causal effect of training, including the effect that runs through the

occupational choice.

In this case, it would be a bad idea to run

Y = Xβ + Dγ + V (13)

unless the efficiency gain were huge.
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A first case of misleading control variable (cont.)

If we did run 13, we would get

β̂ = (X ′MX )−1X ′MY 6= (X ′X )−1X ′Y (14)

To understand the bias note that 13 is equivalent to comparing

trained and not trained for given occupation.

In what follows

I D0 is the occupation you choose given that you were not trained;

I D1 is the occupation you choose given that you were trained;

I Y0 earnings you get given that you were not trained;

I Y1 earnings you get given that you were trained.
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A first case of misleading control variable (cont.)

E(Y |X = 1,D = 1)− E(Y |X = 0,D = 1) (15)

= E(Y1|X = 1,D1 = 1)− E(Y0|X = 0,D0 = 1)

= E(Y1|D1 = 1)− E(Y0|D0 = 1)

= E(Y1 − Y0|D1 = 1) + [E(Y0|D1 = 1)− E(Y0|D0 = 1)]

where the second equality derives from the joint independence of

Y1,D1,Y0,D0 from X .

The bias is represented by the selection effect

[E(Y0|D1 = 1)− E(Y0|D0 = 1)] which reflects the fact that

composition of the pool of white collar workers has changed because

of training even in the counterfactual case of no training.
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A second case of misleading control variable

Let’s now go back to the case in which the true causal PRF is

Y = α + Xβ + Zγ + U (16)

Z is predetermined ability, X is education, Y is earnings, but we

observe only a measure Z̃ of Z taken after education has finshed

(e.g. IQ):

Z̃ = π0 + Xπ1 + Zπ2 + e (17)
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A second case of misleading control variable (cont.)

Substituting 17 in 16 we get

Y =

(
α− γ π0

π2

)
+

(
β − γ π1

π2

)
X +

γ

π2
Z̃ + U (18)

And OLS would be biased and inconsistent for the causal parameters.

Depending on assumptions, we can still say something on β.

But, clearly, timing is crucial in the choice of control variables.
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Subsection 3

Efficiency
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Variance of the OLS estimator of the PMRF

Consider first the simple case of homoschedasticity:

I MLR 5: The variance-covariance matrix of U is

Var(U|X ) = E(UU ′|X ) = σ2In (19)

where In is the n × n identity matrix.

Note that this assumption has two important components:

I The variance of ui should not depend on any variable xj .

I The covariance between ut and us should be zero for any t 6= s.
Note that this condition:
I typically does not hold in time series because of serial correlation;
I it is unlilkely to hold even in a cross section, and you will learn how

to deal with it.
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Variance-covariance matrix

Var(β̂|X ) = E [(β̂ − β)(β̂ − β)′|X ] (20)

= E [(X ′X )−1X ′UU ′X (X ′X )−1|X ]

= (X ′X )−1X ′E [UU ′|X ]X (X ′X )−1

= (X ′X )−1X ′σ2InX (X ′X )−1

= σ2(X ′X )−1

which is a (k + 1)× (k + 1) matrix.

The OLS estimator is more precise:

I the smaller is the variance of the unobservable components.

I the larger is the total variation in the observable regressors X .

I the smaller is the collinearity among observables X .
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An alternative useful way to write the variance

Following Wooldridge (Appendix to Chapter 3):

Var(β̂j ) =
σ2

SSTj (1− R2
j )

(21)

I SSTj =
∑n

i=1(xij − x̄j )
2 is the total sample variation of xj .

I R2
j is the R-squared of the regression of xj on the other

regressors.

This expression highlights three important components of the OLS:

I variance of the unobservable components;

I variance of the regressors;

I multicollinearity between the regressors.

Is it always a good idea to include more regressors?
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An unbiased estimator of σ2

We want to show that

σ̂2 =
1

n − k − 1
Û ′Û (22)

is unbiased for σ2. Note that for k = 1 this is the same estimator that

we have studied for the simple linear regression case.

Û = Y − X β̂ (23)

= Y − X (X ′X )−1X ′Y

= MY = M(Xβ + U) = MU

Where M = I − X (X ′X )−1X ′ is a symmetric and idempotent matrix:

I M ′ = M

I M ′M = M

I MX = 0

I MY = MU
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An unbiased estimator of σ2 (cont.)

E [Û ′Û|X ] = E [U ′M ′MU|X ] (24)

= E [tr(U ′MU)|X ] because a scalar is equal to its trace

= E [tr(MUU ′)|X ] because of the property of the trace

= tr(ME [UU ′|X ]) = tr(M)σ2 = (n − k − 1)σ2

which proves the result. The last equality follows because

tr(M) = tr(In)− tr(X (X ′X )−1X ′) (25)

= tr(In)− tr((X ′X )−1X ′X )

= tr(In)− tr(Ik+1) = n − k − 1

In a sample of size n that we use to estimate k + 1 parameters β, we

are left with only n − k − 1 “degrees of freedom" to estimate σ2.
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Subsection 4

The Gauss-Markov theorem for the PMRF
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The Gauss-Markov theorem
Under the assumptions

I MLR 1: The PRF is linear in the parameters:

Y = Xβ + U (26)

I MLR 2: The n observations on Y and X are a random sample

yi = Xiβ + ui (27)

I MLR 3: There is no collinearity and X has full rank equal to (k+1).

I MLR 4: Conditioning on the entire X each ui has zero mean

E(U|X ) = 0 (28)

I MLR 5: The variance-covariance matrix of unobservables is

Var(U|X ) = E(UU ′|X ) = σ2In (29)

Then the OLS estimator β̂ is the best linear unbiased estimator.
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Proof of the Gauss Markov theorem

Consider a generic alternative linear unbiased estimator

β̃ = A′Y (30)

where A is a n × (k + 1) matrix. Linearity in Y implies that A is a

function of X but cannot be a function of Y . Since β̃ is unbiased it

must be the case that:

E(β̃|X ) = A′Xβ + A′E(U|X ) (31)

= A′Xβ because E(U|X ) = 0

= β

and therefore A′X = Ik+1 and β̃ characterizes the class of linear (in

Y ) unbiased estimators.
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Proof of the Gauss Markov theorem (cont)

The variance of β̃ is:

Var(β̃|X ) = E [(β̃ − β)(β̃ − β)′|X ] (32)

= E [A′UU ′A|X ]

= σ2(A′A)
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Proof of the Gauss Markov theorem (cont)

Var(β̃|X ) − Var(β̂|X ) = σ2[A′A− (X ′X )−1] (33)

= σ2[A′A− A′X (X ′X )−1X ′A] because A′X = Ik+1

= σ2A′[In − X (X ′X )−1X ′]A

= σ2A′MA

Since M is symmetric and idempotent, A′MA is positive semidefinite

for any conformable A, which proves the result.

The OLS-MM estimator β̂ has the smallest variance in the class of

linear unbiased estimators.
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Section 2

Asymptotic properties
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Subsection 1

How to write β̂ so that we can apply the asymptotic
results

31 / 39



Rewriting β̂

Given the PRF:

Y = Xβ + U

the OLS estimator can be written as:

β̂ = (X ′X )−1X ′Y (34)

= β + (X ′X )−1X ′U

= β +

(
1
n

n∑
i=1

X ′i Xi

)−1(
1
n

n∑
i=1

X ′i ui

)

where Xi is the 1× k + 1 vector of the regressors observed for

subject i . s
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Rewriting β̂ (cont.)

Rearranging (34) we get:

√
n(β̂ − β) =

(
1
n

n∑
i=1

X ′i Xi

)−1
1√
n

(
n∑

i=1

X ′i ui

)
(35)

We can now apply asymptotic results to (35) to derive the asymptotic

properties of the estimator.
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Subsection 2

Consistency
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Proof of consistency

Consistency can be demonstrated using in (34)

I the Continuous Mapping Theorem;

I the Law of Large Numbers.

Exploiting the fact that probability limits go through continuous

functions and substituting population moment to sample moment, β̂

converges in probability to:

β̂
p−→ β + (E(X ′i Xi ))

−1
(E(X ′i ui )) (36)

= β

where the last equality holds because E(X ′i ui ) = 0 by definition of the

PRF.
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Subsection 3

Asymptotic normality
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The asymptotic distribution of β̂

Applying Slutsky to 35,
√

n(β̂ − β) has the same distribution of

(E(X ′i Xi ))
−1√n

(
1
n

n∑
i=1

X ′i ui

)
(37)

Since
1
n

n∑
i=1

X ′i ui
p−→ E(X ′i ui ) = 0 (38)

then

√
n

(
1
n

n∑
i=1

X ′i ui

)
d−→ Normal(0,E(X ′i Xiu2

i )) (39)

because it is a root-n blown up and centered sample moment, for

which we can use the Central Limit Theorem.

Note that E(X ′i Xiu2
i ) is a (k + 1)× (k + 1) matrix.
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The asymptotic distribution of β̂ (cont.)

It then follows that:

√
n(β̂−β)

d−→ Normal(0, [E(X ′i Xi )
−1][E(X ′i Xi )u2

i ][E(X ′i Xi )
−1])

(40)

where [E(X ′i Xi )
−1][E(X ′i Xi )u2

i ][E(X ′i Xi )
−1] is again a (k + 1)× (k + 1)

matrix.

Note that we have not assumed homoscedasticity.

We have only assumed identically and independently distributed

random observations, which is what CLT and LLN require to hold.

These asymptotic standard errors are called “Robust", or “Huber -

Eicker - White" standard errors (White (1980)) and provide accurate

hypothesis tests in large sample with minimal assumptions.
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The asy-distribution of β̂ with homoschedasticity

If we are willing to assume homoschedasticity then

E(u2
i |X ) = σ2 (41)

and the “Robust" variance covariance matrix in 40 simplifies to

[E(X ′i Xi )
−1][E(X ′i Xi )u2

i ][E(X ′i Xi )
−1] = (42)

[E(X ′i Xi )
−1][E(X ′i XiE(u2

i |X )][E(X ′i Xi )
−1] =

σ2[E(X ′i Xi )
−1][E(X ′i Xi )][E(X ′i Xi )

−1] =

σ2[E(X ′i Xi )
−1]

and
√

n(β̂ − β) d−→ Normal(0, σ2[E(X ′i Xi )
−1]) (43)
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